mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Merge branch 'main' into qwen-pipeline-mixin
This commit is contained in:
@@ -73,7 +73,7 @@ EXAMPLE_DOC_STRING = """
|
||||
"""
|
||||
|
||||
|
||||
class BriaFiboPipeline(DiffusionPipeline):
|
||||
class BriaFiboPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
|
||||
r"""
|
||||
Args:
|
||||
transformer (`BriaFiboTransformer2DModel`):
|
||||
|
||||
@@ -488,9 +488,20 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
t = t.reshape(sigma.shape)
|
||||
return t
|
||||
|
||||
# copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
||||
# Copied from diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler._convert_to_karras
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
|
||||
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||||
"""
|
||||
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
|
||||
Models](https://huggingface.co/papers/2206.00364).
|
||||
|
||||
Args:
|
||||
in_sigmas (`torch.Tensor`):
|
||||
The input sigma values to be converted.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The converted sigma values following the Karras noise schedule.
|
||||
"""
|
||||
|
||||
sigma_min: float = in_sigmas[-1].item()
|
||||
sigma_max: float = in_sigmas[0].item()
|
||||
|
||||
@@ -99,15 +99,14 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
num_train_timesteps (`int`, defaults to `1000`):
|
||||
The number of diffusion steps to train the model.
|
||||
beta_start (`float`, defaults to 0.0001):
|
||||
beta_start (`float`, defaults to `0.0001`):
|
||||
The starting `beta` value of inference.
|
||||
beta_end (`float`, defaults to 0.02):
|
||||
beta_end (`float`, defaults to `0.02`):
|
||||
The final `beta` value.
|
||||
beta_schedule (`str`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear` or `scaled_linear`.
|
||||
beta_schedule (`"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model.
|
||||
trained_betas (`np.ndarray`, *optional*):
|
||||
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
@@ -118,14 +117,14 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
||||
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
steps_offset (`int`, defaults to 0):
|
||||
steps_offset (`int`, defaults to `0`):
|
||||
An offset added to the inference steps, as required by some model families.
|
||||
"""
|
||||
|
||||
@@ -138,13 +137,13 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
use_beta_sigmas: Optional[bool] = False,
|
||||
prediction_type: str = "epsilon",
|
||||
timestep_spacing: str = "linspace",
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
@@ -183,7 +182,15 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
@property
|
||||
def init_noise_sigma(self):
|
||||
def init_noise_sigma(self) -> Union[float, torch.Tensor]:
|
||||
"""
|
||||
The standard deviation of the initial noise distribution.
|
||||
|
||||
Returns:
|
||||
`float` or `torch.Tensor`:
|
||||
The standard deviation of the initial noise distribution, computed based on the maximum sigma value and
|
||||
the timestep spacing configuration.
|
||||
"""
|
||||
# standard deviation of the initial noise distribution
|
||||
if self.config.timestep_spacing in ["linspace", "trailing"]:
|
||||
return self.sigmas.max()
|
||||
@@ -191,21 +198,29 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
return (self.sigmas.max() ** 2 + 1) ** 0.5
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
def step_index(self) -> Optional[int]:
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
The index counter for current timestep. It will increase by 1 after each scheduler step.
|
||||
|
||||
Returns:
|
||||
`int` or `None`:
|
||||
The current step index, or `None` if not initialized.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
def begin_index(self) -> Optional[int]:
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
|
||||
Returns:
|
||||
`int` or `None`:
|
||||
The begin index for the scheduler, or `None` if not set.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
def set_begin_index(self, begin_index: int = 0) -> None:
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
@@ -239,14 +254,21 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.is_scale_input_called = True
|
||||
return sample
|
||||
|
||||
def get_lms_coefficient(self, order, t, current_order):
|
||||
def get_lms_coefficient(self, order: int, t: int, current_order: int) -> float:
|
||||
"""
|
||||
Compute the linear multistep coefficient.
|
||||
|
||||
Args:
|
||||
order ():
|
||||
t ():
|
||||
current_order ():
|
||||
order (`int`):
|
||||
The order of the linear multistep method.
|
||||
t (`int`):
|
||||
The current timestep index.
|
||||
current_order (`int`):
|
||||
The current order for which to compute the coefficient.
|
||||
|
||||
Returns:
|
||||
`float`:
|
||||
The computed linear multistep coefficient.
|
||||
"""
|
||||
|
||||
def lms_derivative(tau):
|
||||
@@ -261,7 +283,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
return integrated_coeff
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
def set_timesteps(self, num_inference_steps: int, device: Optional[Union[str, torch.device]] = None) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -367,7 +389,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._step_index = self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||||
def _sigma_to_t(self, sigma, log_sigmas):
|
||||
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert sigma values to corresponding timestep values through interpolation.
|
||||
|
||||
@@ -403,9 +425,19 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
t = t.reshape(sigma.shape)
|
||||
return t
|
||||
|
||||
# copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
|
||||
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||||
"""
|
||||
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
|
||||
Models](https://huggingface.co/papers/2206.00364).
|
||||
|
||||
Args:
|
||||
in_sigmas (`torch.Tensor`):
|
||||
The input sigma values to be converted.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The converted sigma values following the Karras noise schedule.
|
||||
"""
|
||||
|
||||
sigma_min: float = in_sigmas[-1].item()
|
||||
sigma_max: float = in_sigmas[0].item()
|
||||
@@ -629,5 +661,5 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
noisy_samples = original_samples + noise * sigma
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
Reference in New Issue
Block a user