mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Fix UniPC scheduler for 1D (#5276)
This commit is contained in:
committed by
GitHub
parent
dfcce3ca6e
commit
7271f8b717
@@ -276,13 +276,13 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -290,11 +290,10 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -298,13 +298,13 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -312,11 +312,10 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -330,13 +330,13 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -344,11 +344,10 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -344,13 +344,13 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -358,11 +358,10 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -268,13 +268,13 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -282,11 +282,10 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -288,13 +288,13 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -302,11 +302,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -298,13 +298,13 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -312,11 +312,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -302,13 +302,13 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -316,11 +316,10 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
@@ -282,13 +282,13 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, height, width = sample.shape
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * height * width)
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
@@ -296,11 +296,10 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
|
||||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, height, width)
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
Reference in New Issue
Block a user