1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Add IF dreambooth docs (#3470)

This commit is contained in:
Will Berman
2023-05-17 11:56:10 -07:00
committed by GitHub
parent c9f939bf98
commit 7200985eab

View File

@@ -531,3 +531,67 @@ More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_
### Experimental results
You can refer to [this blog post](https://huggingface.co/blog/dreambooth) that discusses some of DreamBooth experiments in detail. Specifically, it recommends a set of DreamBooth-specific tips and tricks that we have found to work well for a variety of subjects.
## IF
You can use the lora and full dreambooth scripts to also train the text to image [IF model](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0). A few alternative cli flags are needed due to the model size, the expected input resolution, and the text encoder conventions.
### LoRA Dreambooth
This training configuration requires ~28 GB VRAM.
```sh
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_dog_lora"
accelerate launch train_dreambooth_lora.py \
--report_to wandb \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a sks dog" \
--resolution=64 \ # The input resolution of the IF unet is 64x64
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=5e-6 \
--scale_lr \
--max_train_steps=1200 \
--validation_prompt="a sks dog" \
--validation_epochs=25 \
--checkpointing_steps=100 \
--pre_compute_text_embeddings \ # Pre compute text embeddings to that T5 doesn't have to be kept in memory
--tokenizer_max_length=77 \ # IF expects an override of the max token length
--text_encoder_use_attention_mask # IF expects attention mask for text embeddings
```
### Full Dreambooth
Due to the size of the optimizer states, we recommend training the full XL IF model with 8bit adam.
Using 8bit adam and the rest of the following config, the model can be trained in ~48 GB VRAM.
For full dreambooth, IF requires very low learning rates. With higher learning rates model quality will degrade.
```sh
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_if"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=64 \ # The input resolution of the IF unet is 64x64
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-7 \
--max_train_steps=150 \
--validation_prompt "a photo of sks dog" \
--validation_steps 25 \
--text_encoder_use_attention_mask \ # IF expects attention mask for text embeddings
--tokenizer_max_length 77 \ # IF expects an override of the max token length
--pre_compute_text_embeddings \ # Pre compute text embeddings to that T5 doesn't have to be kept in memory
--use_8bit_adam \ #
--set_grads_to_none \
--skip_save_text_encoder # do not save the full T5 text encoder with the model
```