1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[lora] tests for exclude_modules with Wan VACE (#11843)

* wan vace.

* update

* update

* import problem
This commit is contained in:
Sayak Paul
2025-07-02 14:23:26 +05:30
committed by GitHub
parent 0e95aa853e
commit 6f1d6694df

View File

@@ -0,0 +1,217 @@
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import tempfile
import unittest
import numpy as np
import pytest
import safetensors.torch
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanVACEPipeline, WanVACETransformer3DModel
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
floats_tensor,
require_peft_backend,
require_peft_version_greater,
skip_mps,
torch_device,
)
if is_peft_available():
from peft.utils import get_peft_model_state_dict
sys.path.append(".")
from utils import PeftLoraLoaderMixinTests # noqa: E402
@require_peft_backend
@skip_mps
class WanVACELoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = WanVACEPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}
transformer_kwargs = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 8,
"in_channels": 4,
"out_channels": 4,
"text_dim": 32,
"freq_dim": 16,
"ffn_dim": 16,
"num_layers": 2,
"cross_attn_norm": True,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 16,
"vace_layers": [0],
"vace_in_channels": 72,
}
transformer_cls = WanVACETransformer3DModel
vae_kwargs = {
"base_dim": 3,
"z_dim": 4,
"dim_mult": [1, 1, 1, 1],
"latents_mean": torch.randn(4).numpy().tolist(),
"latents_std": torch.randn(4).numpy().tolist(),
"num_res_blocks": 1,
"temperal_downsample": [False, True, True],
}
vae_cls = AutoencoderKLWan
has_two_text_encoders = True
tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
text_encoder_target_modules = ["q", "k", "v", "o"]
@property
def output_shape(self):
return (1, 9, 16, 16, 3)
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 16
num_channels = 4
num_frames = 9
num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
sizes = (4, 4)
height, width = 16, 16
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
video = [Image.new("RGB", (height, width))] * num_frames
mask = [Image.new("L", (height, width), 0)] * num_frames
pipeline_inputs = {
"video": video,
"mask": mask,
"prompt": "",
"num_frames": num_frames,
"num_inference_steps": 1,
"guidance_scale": 6.0,
"height": height,
"width": height,
"max_sequence_length": sequence_length,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
def test_simple_inference_with_text_denoiser_lora_unfused(self):
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
@unittest.skip("Not supported in Wan VACE.")
def test_simple_inference_with_text_denoiser_block_scale(self):
pass
@unittest.skip("Not supported in Wan VACE.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
@unittest.skip("Not supported in Wan VACE.")
def test_modify_padding_mode(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
def test_simple_inference_with_partial_text_lora(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
def test_simple_inference_with_text_lora(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
def test_simple_inference_with_text_lora_and_scale(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
def test_simple_inference_with_text_lora_fused(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
def test_simple_inference_with_text_lora_save_load(self):
pass
@pytest.mark.xfail(
condition=True,
reason="RuntimeError: Input type (float) and bias type (c10::BFloat16) should be the same",
strict=True,
)
def test_layerwise_casting_inference_denoiser(self):
super().test_layerwise_casting_inference_denoiser()
@require_peft_version_greater("0.13.2")
def test_lora_exclude_modules_wanvace(self):
scheduler_cls = self.scheduler_classes[0]
exclude_module_name = "vace_blocks.0.proj_out"
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components).to(torch_device)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(output_no_lora.shape == self.output_shape)
# only supported for `denoiser` now
denoiser_lora_config.target_modules = ["proj_out"]
denoiser_lora_config.exclude_modules = [exclude_module_name]
pipe, _ = self.add_adapters_to_pipeline(
pipe, text_lora_config=text_lora_config, denoiser_lora_config=denoiser_lora_config
)
# The state dict shouldn't contain the modules to be excluded from LoRA.
state_dict_from_model = get_peft_model_state_dict(pipe.transformer, adapter_name="default")
self.assertTrue(not any(exclude_module_name in k for k in state_dict_from_model))
self.assertTrue(any("proj_out" in k for k in state_dict_from_model))
output_lora_exclude_modules = pipe(**inputs, generator=torch.manual_seed(0))[0]
with tempfile.TemporaryDirectory() as tmpdir:
modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
self.pipeline_class.save_lora_weights(save_directory=tmpdir, **lora_state_dicts)
pipe.unload_lora_weights()
# Check in the loaded state dict.
loaded_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
self.assertTrue(not any(exclude_module_name in k for k in loaded_state_dict))
self.assertTrue(any("proj_out" in k for k in loaded_state_dict))
# Check in the state dict obtained after loading LoRA.
pipe.load_lora_weights(tmpdir)
state_dict_from_model = get_peft_model_state_dict(pipe.transformer, adapter_name="default_0")
self.assertTrue(not any(exclude_module_name in k for k in state_dict_from_model))
self.assertTrue(any("proj_out" in k for k in state_dict_from_model))
output_lora_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(
not np.allclose(output_no_lora, output_lora_exclude_modules, atol=1e-3, rtol=1e-3),
"LoRA should change outputs.",
)
self.assertTrue(
np.allclose(output_lora_exclude_modules, output_lora_pretrained, atol=1e-3, rtol=1e-3),
"Lora outputs should match.",
)