mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
fight lora runner tests
This commit is contained in:
@@ -18,10 +18,10 @@ import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
from PIL import Image
|
||||
import pytest
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from diffusers import CogVideoXTransformer3DModel, DiffusionPipeline
|
||||
from diffusers.utils import export_to_video
|
||||
|
||||
|
||||
sys.path.append("..")
|
||||
@@ -36,41 +36,36 @@ logger.addHandler(stream_handler)
|
||||
|
||||
|
||||
class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
dataset_name = "hf-internal-testing/tiny-video-dataset"
|
||||
instance_data_dir = "videos/"
|
||||
caption_column = "prompts.txt"
|
||||
caption_column = "captions.txt"
|
||||
video_column = "videos.txt"
|
||||
video_filename = "00001.mp4"
|
||||
instance_prompt = "A panda playing a guitar"
|
||||
instance_prompt = "A hiker standing at the peak of mountain"
|
||||
max_num_frames = 9
|
||||
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-cogvideox-pipe"
|
||||
script_path = "examples/cogvideo/train_cogvideox_lora.py"
|
||||
|
||||
def prepare_dummy_inputs(self, instance_data_root: str, num_frames: int = 8):
|
||||
caption = "A panda playing a guitar"
|
||||
dataset_path = None
|
||||
|
||||
# We create a longer video to also verify if the max_num_frames parameter is working correctly
|
||||
video = [Image.new("RGB", (32, 32), color=0)] * (num_frames * 2)
|
||||
@pytest.fixture(scope="class", autouse=True)
|
||||
def prepare_dummy_inputs(self, request):
|
||||
tmpdir = tempfile.mkdtemp()
|
||||
|
||||
print(os.path.join(instance_data_root, self.caption_column))
|
||||
with open(os.path.join(instance_data_root, self.caption_column), "w") as file:
|
||||
file.write(caption)
|
||||
try:
|
||||
if request.cls.dataset_path is None:
|
||||
request.cls.dataset_path = snapshot_download(self.dataset_name, repo_type="dataset", cache_dir=tmpdir)
|
||||
|
||||
with open(os.path.join(instance_data_root, self.video_column), "w") as file:
|
||||
file.write(f"{self.instance_data_dir}/{self.video_filename}")
|
||||
|
||||
video_dir = os.path.join(instance_data_root, self.instance_data_dir)
|
||||
os.makedirs(video_dir, exist_ok=True)
|
||||
export_to_video(video, os.path.join(video_dir, self.video_filename), fps=8)
|
||||
yield
|
||||
finally:
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
def test_lora(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
max_num_frames = 9
|
||||
self.prepare_dummy_inputs(tmpdir, num_frames=max_num_frames)
|
||||
|
||||
test_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {tmpdir}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
@@ -79,7 +74,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames {max_num_frames}
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--max_train_steps 2
|
||||
@@ -99,13 +94,10 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
# max_train_steps == 4, checkpointing_steps == 2
|
||||
# Should create checkpoints at steps 2, 4
|
||||
|
||||
max_num_frames = 9
|
||||
self.prepare_dummy_inputs(tmpdir, num_frames=max_num_frames)
|
||||
|
||||
initial_run_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {tmpdir}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
@@ -114,7 +106,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames 9
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
@@ -164,7 +156,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
resume_run_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {tmpdir}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
@@ -173,7 +165,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames 9
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
@@ -207,13 +199,10 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
|
||||
def test_lora_checkpointing_checkpoints_total_limit(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
max_num_frames = 9
|
||||
self.prepare_dummy_inputs(tmpdir, num_frames=max_num_frames)
|
||||
|
||||
test_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {tmpdir}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
@@ -222,7 +211,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames 9
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
@@ -244,13 +233,10 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
|
||||
def test_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
max_num_frames = 9
|
||||
self.prepare_dummy_inputs(tmpdir, num_frames=max_num_frames)
|
||||
|
||||
test_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {tmpdir}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
@@ -259,7 +245,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames 9
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
@@ -281,7 +267,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
resume_run_args = f"""
|
||||
{self.script_path}
|
||||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
|
||||
--instance_data_root {tmpdir}
|
||||
--instance_data_root {self.dataset_path}
|
||||
--caption_column {self.caption_column}
|
||||
--video_column {self.video_column}
|
||||
--rank 1
|
||||
@@ -290,7 +276,7 @@ class CogVideoXLoRA(ExamplesTestsAccelerate):
|
||||
--height 32
|
||||
--width 32
|
||||
--fps 8
|
||||
--max_num_frames 9
|
||||
--max_num_frames {self.max_num_frames}
|
||||
--train_batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--learning_rate 1e-3
|
||||
|
||||
Reference in New Issue
Block a user