1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

do not automatically enable xformers (#1640)

* do not automatically enable xformers

* uP
This commit is contained in:
Patrick von Platen
2022-12-09 18:28:36 +01:00
committed by GitHub
parent 63c4944998
commit 6b68afd8e4
4 changed files with 30 additions and 11 deletions

View File

@@ -17,6 +17,7 @@ from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
@@ -488,6 +489,15 @@ def main(args):
revision=args.revision,
)
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention(True)
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
vae.requires_grad_(False)
if not args.train_text_encoder:
text_encoder.requires_grad_(False)

View File

@@ -18,6 +18,7 @@ from datasets import load_dataset
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
@@ -364,6 +365,15 @@ def main():
revision=args.revision,
)
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention(True)
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)

View File

@@ -20,6 +20,7 @@ from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusi
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
@@ -439,6 +440,15 @@ def main():
revision=args.revision,
)
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention(True)
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))

View File

@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from dataclasses import dataclass
from typing import Optional
@@ -447,16 +446,6 @@ class BasicTransformerBlock(nn.Module):
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim)
# if xformers is installed try to use memory_efficient_attention by default
if is_xformers_available():
try:
self.set_use_memory_efficient_attention_xformers(True)
except Exception as e:
warnings.warn(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if not is_xformers_available():
print("Here is how to install it")