mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
feat: add Mixture-of-Diffusers ControlNet Tile upscaler Pipeline for SDXL (#10951)
* feat: add Mixture-of-Diffusers ControlNet Tile upscaler Pipeline for SDXL * make style make quality
This commit is contained in:
@@ -53,6 +53,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
|
||||
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
||||
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
||||
| Stable Diffusion Mixture Tiling Pipeline SDXL | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SDXL](#stable-diffusion-mixture-tiling-pipeline-sdxl) | [](https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
|
||||
| Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL | This is an advanced pipeline that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the latent space denoising process. Designed to overcome the limitations of conventional pixel-space tile processing, this pipeline delivers Super Resolution (SR) upscaling for higher-quality images, reduced processing time, and greater adaptability. | [Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL](#stable-diffusion-mod-controlnet-tile-sr-pipeline-sdxl) | [](https://huggingface.co/spaces/elismasilva/mod-control-tile-upscaler-sdxl) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
|
||||
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
|
||||
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
||||
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
||||
@@ -2630,6 +2631,103 @@ image = pipe(
|
||||
|
||||

|
||||
|
||||
### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL
|
||||
|
||||
This pipeline implements the [MoD (Mixture-of-Diffusers)]("https://arxiv.org/pdf/2408.06072") tiled diffusion technique and combines it with SDXL's ControlNet Tile process to generate SR images.
|
||||
|
||||
This works better with 4x scales, but you can try adjusts parameters to higher scales.
|
||||
|
||||
````python
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler, UNet2DConditionModel
|
||||
from diffusers.utils import load_image
|
||||
from PIL import Image
|
||||
|
||||
device = "cuda"
|
||||
|
||||
# Initialize the models and pipeline
|
||||
controlnet = ControlNetUnionModel.from_pretrained(
|
||||
"brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
|
||||
).to(device=device)
|
||||
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)
|
||||
|
||||
model_id = "SG161222/RealVisXL_V5.0"
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
model_id,
|
||||
torch_dtype=torch.float16,
|
||||
vae=vae,
|
||||
controlnet=controlnet,
|
||||
custom_pipeline="mod_controlnet_tile_sr_sdxl",
|
||||
use_safetensors=True,
|
||||
variant="fp16",
|
||||
).to(device)
|
||||
|
||||
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
|
||||
|
||||
#pipe.enable_model_cpu_offload() # << Enable this if you have limited VRAM
|
||||
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
|
||||
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM
|
||||
|
||||
# Set selected scheduler
|
||||
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
# Load image
|
||||
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
|
||||
original_height = control_image.height
|
||||
original_width = control_image.width
|
||||
print(f"Current resolution: H:{original_height} x W:{original_width}")
|
||||
|
||||
# Pre-upscale image for tiling
|
||||
resolution = 4096
|
||||
tile_gaussian_sigma = 0.3
|
||||
max_tile_size = 1024 # or 1280
|
||||
|
||||
current_size = max(control_image.size)
|
||||
scale_factor = max(2, resolution / current_size)
|
||||
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
|
||||
image = control_image.resize(new_size, Image.LANCZOS)
|
||||
|
||||
# Update target height and width
|
||||
target_height = image.height
|
||||
target_width = image.width
|
||||
print(f"Target resolution: H:{target_height} x W:{target_width}")
|
||||
|
||||
# Calculate overlap size
|
||||
normal_tile_overlap, border_tile_overlap = pipe.calculate_overlap(target_width, target_height)
|
||||
|
||||
# Set other params
|
||||
tile_weighting_method = pipe.TileWeightingMethod.COSINE.value
|
||||
guidance_scale = 4
|
||||
num_inference_steps = 35
|
||||
denoising_strenght = 0.65
|
||||
controlnet_strength = 1.0
|
||||
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
|
||||
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"
|
||||
|
||||
# Image generation
|
||||
generated_image = pipe(
|
||||
image=image,
|
||||
control_image=control_image,
|
||||
control_mode=[6],
|
||||
controlnet_conditioning_scale=float(controlnet_strength),
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
normal_tile_overlap=normal_tile_overlap,
|
||||
border_tile_overlap=border_tile_overlap,
|
||||
height=target_height,
|
||||
width=target_width,
|
||||
original_size=(original_width, original_height),
|
||||
target_size=(target_width, target_height),
|
||||
guidance_scale=guidance_scale,
|
||||
strength=float(denoising_strenght),
|
||||
tile_weighting_method=tile_weighting_method,
|
||||
max_tile_size=max_tile_size,
|
||||
tile_gaussian_sigma=float(tile_gaussian_sigma),
|
||||
num_inference_steps=num_inference_steps,
|
||||
)["images"][0]
|
||||
````
|
||||

|
||||
|
||||
### TensorRT Inpainting Stable Diffusion Pipeline
|
||||
|
||||
The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.
|
||||
|
||||
1862
examples/community/mod_controlnet_tile_sr_sdxl.py
Normal file
1862
examples/community/mod_controlnet_tile_sr_sdxl.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user