mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add PAG Support for Stable Diffusion Inpaint Pipeline (#9386)
* using sd inpaint pipeline and sdxl pag inpaint pipeline to add changes * using sd inpaint pipeline and sdxl pag inpaint pipeline to add changes * finished the call function * added auto pipeline * merging diffusers * ready to test * ready to test * added copied from and removed unnecessary tests * make style changes * doc changes * updating example doc string * style fix * init * adding imports * quality * Update src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py * make * Update tests/pipelines/pag/test_pag_sd_inpaint.py * slice and size * slice --------- Co-authored-by: Darshil Jariwala <darshiljariwala@Darshils-MacBook-Air.local> Co-authored-by: Darshil Jariwala <jariwala.darshil2002@gmail.com> Co-authored-by: YiYi Xu <yixu310@gmail.com> Co-authored-by: hlky <hlky@hlky.ac>
This commit is contained in:
@@ -48,6 +48,11 @@ Since RegEx is supported as a way for matching layer identifiers, it is crucial
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusionPAGInpaintPipeline
|
||||
[[autodoc]] StableDiffusionPAGInpaintPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## StableDiffusionPAGPipeline
|
||||
[[autodoc]] StableDiffusionPAGPipeline
|
||||
- all
|
||||
|
||||
@@ -363,6 +363,7 @@ else:
|
||||
"StableDiffusionLDM3DPipeline",
|
||||
"StableDiffusionModelEditingPipeline",
|
||||
"StableDiffusionPAGImg2ImgPipeline",
|
||||
"StableDiffusionPAGInpaintPipeline",
|
||||
"StableDiffusionPAGPipeline",
|
||||
"StableDiffusionPanoramaPipeline",
|
||||
"StableDiffusionParadigmsPipeline",
|
||||
@@ -834,6 +835,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
StableDiffusionLDM3DPipeline,
|
||||
StableDiffusionModelEditingPipeline,
|
||||
StableDiffusionPAGImg2ImgPipeline,
|
||||
StableDiffusionPAGInpaintPipeline,
|
||||
StableDiffusionPAGPipeline,
|
||||
StableDiffusionPanoramaPipeline,
|
||||
StableDiffusionParadigmsPipeline,
|
||||
|
||||
@@ -174,6 +174,7 @@ else:
|
||||
"StableDiffusion3PAGImg2ImgPipeline",
|
||||
"StableDiffusionPAGPipeline",
|
||||
"StableDiffusionPAGImg2ImgPipeline",
|
||||
"StableDiffusionPAGInpaintPipeline",
|
||||
"StableDiffusionControlNetPAGPipeline",
|
||||
"StableDiffusionXLPAGPipeline",
|
||||
"StableDiffusionXLPAGInpaintPipeline",
|
||||
@@ -595,6 +596,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
StableDiffusionControlNetPAGInpaintPipeline,
|
||||
StableDiffusionControlNetPAGPipeline,
|
||||
StableDiffusionPAGImg2ImgPipeline,
|
||||
StableDiffusionPAGInpaintPipeline,
|
||||
StableDiffusionPAGPipeline,
|
||||
StableDiffusionXLControlNetPAGImg2ImgPipeline,
|
||||
StableDiffusionXLControlNetPAGPipeline,
|
||||
|
||||
@@ -66,6 +66,7 @@ from .pag import (
|
||||
StableDiffusionControlNetPAGInpaintPipeline,
|
||||
StableDiffusionControlNetPAGPipeline,
|
||||
StableDiffusionPAGImg2ImgPipeline,
|
||||
StableDiffusionPAGInpaintPipeline,
|
||||
StableDiffusionPAGPipeline,
|
||||
StableDiffusionXLControlNetPAGImg2ImgPipeline,
|
||||
StableDiffusionXLControlNetPAGPipeline,
|
||||
@@ -160,6 +161,7 @@ AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
|
||||
("stable-diffusion-xl-pag", StableDiffusionXLPAGInpaintPipeline),
|
||||
("flux", FluxInpaintPipeline),
|
||||
("flux-controlnet", FluxControlNetInpaintPipeline),
|
||||
("stable-diffusion-pag", StableDiffusionPAGInpaintPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@@ -34,6 +34,8 @@ else:
|
||||
_import_structure["pipeline_pag_sd_3_img2img"] = ["StableDiffusion3PAGImg2ImgPipeline"]
|
||||
_import_structure["pipeline_pag_sd_animatediff"] = ["AnimateDiffPAGPipeline"]
|
||||
_import_structure["pipeline_pag_sd_img2img"] = ["StableDiffusionPAGImg2ImgPipeline"]
|
||||
_import_structure["pipeline_pag_sd_inpaint"] = ["StableDiffusionPAGInpaintPipeline"]
|
||||
|
||||
_import_structure["pipeline_pag_sd_xl"] = ["StableDiffusionXLPAGPipeline"]
|
||||
_import_structure["pipeline_pag_sd_xl_img2img"] = ["StableDiffusionXLPAGImg2ImgPipeline"]
|
||||
_import_structure["pipeline_pag_sd_xl_inpaint"] = ["StableDiffusionXLPAGInpaintPipeline"]
|
||||
@@ -58,6 +60,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .pipeline_pag_sd_3_img2img import StableDiffusion3PAGImg2ImgPipeline
|
||||
from .pipeline_pag_sd_animatediff import AnimateDiffPAGPipeline
|
||||
from .pipeline_pag_sd_img2img import StableDiffusionPAGImg2ImgPipeline
|
||||
from .pipeline_pag_sd_inpaint import StableDiffusionPAGInpaintPipeline
|
||||
from .pipeline_pag_sd_xl import StableDiffusionXLPAGPipeline
|
||||
from .pipeline_pag_sd_xl_img2img import StableDiffusionXLPAGImg2ImgPipeline
|
||||
from .pipeline_pag_sd_xl_inpaint import StableDiffusionXLPAGInpaintPipeline
|
||||
|
||||
1356
src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
Normal file
1356
src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1757,6 +1757,21 @@ class StableDiffusionPAGImg2ImgPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionPAGInpaintPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionPAGPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
318
tests/pipelines/pag/test_pag_sd_inpaint.py
Normal file
318
tests/pipelines/pag/test_pag_sd_inpaint.py
Normal file
@@ -0,0 +1,318 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import random
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
AutoPipelineForInpainting,
|
||||
PNDMScheduler,
|
||||
StableDiffusionPAGInpaintPipeline,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
load_image,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..pipeline_params import (
|
||||
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
|
||||
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
|
||||
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
||||
)
|
||||
from ..test_pipelines_common import (
|
||||
IPAdapterTesterMixin,
|
||||
PipelineFromPipeTesterMixin,
|
||||
PipelineLatentTesterMixin,
|
||||
PipelineTesterMixin,
|
||||
SDXLOptionalComponentsTesterMixin,
|
||||
)
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class StableDiffusionPAGInpaintPipelineFastTests(
|
||||
PipelineTesterMixin,
|
||||
IPAdapterTesterMixin,
|
||||
PipelineLatentTesterMixin,
|
||||
PipelineFromPipeTesterMixin,
|
||||
SDXLOptionalComponentsTesterMixin,
|
||||
unittest.TestCase,
|
||||
):
|
||||
pipeline_class = StableDiffusionPAGInpaintPipeline
|
||||
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
|
||||
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
||||
image_params = frozenset([])
|
||||
image_latents_params = frozenset([])
|
||||
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union(
|
||||
{"add_text_embeds", "add_time_ids", "mask", "masked_image_latents"}
|
||||
)
|
||||
|
||||
def get_dummy_components(self, time_cond_proj_dim=None):
|
||||
torch.manual_seed(0)
|
||||
unet = UNet2DConditionModel(
|
||||
block_out_channels=(32, 64),
|
||||
time_cond_proj_dim=time_cond_proj_dim,
|
||||
layers_per_block=2,
|
||||
sample_size=32,
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
||||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
||||
cross_attention_dim=32,
|
||||
)
|
||||
scheduler = PNDMScheduler(skip_prk_steps=True)
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
block_out_channels=[32, 64],
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
latent_channels=4,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
text_encoder_config = CLIPTextConfig(
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
hidden_size=32,
|
||||
intermediate_size=37,
|
||||
layer_norm_eps=1e-05,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=5,
|
||||
pad_token_id=1,
|
||||
vocab_size=1000,
|
||||
)
|
||||
text_encoder = CLIPTextModel(text_encoder_config)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
components = {
|
||||
"unet": unet,
|
||||
"scheduler": scheduler,
|
||||
"vae": vae,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"safety_checker": None,
|
||||
"feature_extractor": None,
|
||||
"image_encoder": None,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
|
||||
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
||||
# create mask
|
||||
image[8:, 8:, :] = 255
|
||||
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64))
|
||||
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"image": init_image,
|
||||
"mask_image": mask_image,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"strength": 1.0,
|
||||
"pag_scale": 0.9,
|
||||
"output_type": "np",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_pag_applied_layers(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
|
||||
# base pipeline
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers
|
||||
all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k]
|
||||
original_attn_procs = pipe.unet.attn_processors
|
||||
pag_layers = [
|
||||
"down",
|
||||
"mid",
|
||||
"up",
|
||||
]
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers)
|
||||
|
||||
# pag_applied_layers = ["mid"], or ["mid.block_0"] or ["mid.block_0.attentions_0"] should apply to all self-attention layers in mid_block, i.e.
|
||||
# mid_block.attentions.0.transformer_blocks.0.attn1.processor
|
||||
# mid_block.attentions.0.transformer_blocks.1.attn1.processor
|
||||
all_self_attn_mid_layers = [
|
||||
"mid_block.attentions.0.transformer_blocks.0.attn1.processor",
|
||||
# "mid_block.attentions.0.transformer_blocks.1.attn1.processor",
|
||||
]
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["mid"]
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
|
||||
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["mid_block"]
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
|
||||
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["mid_block.attentions.0"]
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
|
||||
|
||||
# pag_applied_layers = ["mid.block_0.attentions_1"] does not exist in the model
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["mid_block.attentions.1"]
|
||||
with self.assertRaises(ValueError):
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
|
||||
# pag_applied_layers = "down" should apply to all self-attention layers in down_blocks
|
||||
# down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor
|
||||
# down_blocks.1.attentions.0.transformer_blocks.1.attn1.processor
|
||||
# down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor
|
||||
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["down"]
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
assert len(pipe.pag_attn_processors) == 2
|
||||
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["down_blocks.0"]
|
||||
with self.assertRaises(ValueError):
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["down_blocks.1"]
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
assert len(pipe.pag_attn_processors) == 2
|
||||
|
||||
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
||||
pag_layers = ["down_blocks.1.attentions.1"]
|
||||
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
||||
assert len(pipe.pag_attn_processors) == 1
|
||||
|
||||
def test_pag_inference(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
||||
pipe_pag = pipe_pag.to(device)
|
||||
pipe_pag.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe_pag(**inputs).images
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (
|
||||
1,
|
||||
64,
|
||||
64,
|
||||
3,
|
||||
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
|
||||
|
||||
expected_slice = np.array([0.7190, 0.5807, 0.6007, 0.5600, 0.6350, 0.6639, 0.5680, 0.5664, 0.5230])
|
||||
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
||||
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class StableDiffusionPAGPipelineIntegrationTests(unittest.TestCase):
|
||||
pipeline_class = StableDiffusionPAGInpaintPipeline
|
||||
repo_id = "runwayml/stable-diffusion-v1-5"
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def get_inputs(self, device, generator_device="cpu", seed=0, guidance_scale=7.0):
|
||||
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
||||
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
||||
|
||||
init_image = load_image(img_url).convert("RGB")
|
||||
mask_image = load_image(mask_url).convert("RGB")
|
||||
|
||||
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A majestic tiger sitting on a bench",
|
||||
"generator": generator,
|
||||
"image": init_image,
|
||||
"mask_image": mask_image,
|
||||
"strength": 0.8,
|
||||
"num_inference_steps": 3,
|
||||
"guidance_scale": guidance_scale,
|
||||
"pag_scale": 3.0,
|
||||
"output_type": "np",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_pag_cfg(self):
|
||||
pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
pipeline.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_inputs(torch_device)
|
||||
image = pipeline(**inputs).images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1].flatten()
|
||||
assert image.shape == (1, 512, 512, 3)
|
||||
print(image_slice.flatten())
|
||||
expected_slice = np.array(
|
||||
[0.38793945, 0.4111328, 0.47924805, 0.39208984, 0.4165039, 0.41674805, 0.37060547, 0.36791992, 0.40625]
|
||||
)
|
||||
assert (
|
||||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
||||
), f"output is different from expected, {image_slice.flatten()}"
|
||||
|
||||
def test_pag_uncond(self):
|
||||
pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
|
||||
pipeline.enable_model_cpu_offload()
|
||||
pipeline.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_inputs(torch_device, guidance_scale=0.0)
|
||||
image = pipeline(**inputs).images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1].flatten()
|
||||
assert image.shape == (1, 512, 512, 3)
|
||||
expected_slice = np.array(
|
||||
[0.3876953, 0.40356445, 0.4934082, 0.39697266, 0.41674805, 0.41015625, 0.375, 0.36914062, 0.40649414]
|
||||
)
|
||||
assert (
|
||||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
||||
), f"output is different from expected, {image_slice.flatten()}"
|
||||
Reference in New Issue
Block a user