mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
Merge branch 'main' into cogvideox-lora-and-training
This commit is contained in:
10
.github/workflows/nightly_tests.yml
vendored
10
.github/workflows/nightly_tests.yml
vendored
@@ -79,7 +79,7 @@ jobs:
|
||||
python utils/print_env.py
|
||||
- name: Pipeline CUDA Test
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
@@ -139,7 +139,7 @@ jobs:
|
||||
- name: Run nightly PyTorch CUDA tests for non-pipeline modules
|
||||
if: ${{ matrix.module != 'examples'}}
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
@@ -152,7 +152,7 @@ jobs:
|
||||
- name: Run nightly example tests with Torch
|
||||
if: ${{ matrix.module == 'examples' }}
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
@@ -209,7 +209,7 @@ jobs:
|
||||
|
||||
- name: Run nightly Flax TPU tests
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
run: |
|
||||
python -m pytest -n 0 \
|
||||
-s -v -k "Flax" \
|
||||
@@ -264,7 +264,7 @@ jobs:
|
||||
|
||||
- name: Run Nightly ONNXRuntime CUDA tests
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "Onnx" \
|
||||
|
||||
@@ -77,16 +77,33 @@ CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds o
|
||||
- `pipe.enable_model_cpu_offload()`:
|
||||
- Without enabling cpu offloading, memory usage is `33 GB`
|
||||
- With enabling cpu offloading, memory usage is `19 GB`
|
||||
- `pipe.enable_sequential_cpu_offload()`:
|
||||
- Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference
|
||||
- When enabled, memory usage is under `4 GB`
|
||||
- `pipe.vae.enable_tiling()`:
|
||||
- With enabling cpu offloading and tiling, memory usage is `11 GB`
|
||||
- `pipe.vae.enable_slicing()`
|
||||
|
||||
### Quantized inference
|
||||
|
||||
[torchao](https://github.com/pytorch/ao) and [optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, transformer and VAE modules to lower the memory requirements. This makes it possible to run the model on a free-tier T4 Colab or lower VRAM GPUs!
|
||||
|
||||
It is also worth noting that torchao quantization is fully compatible with [torch.compile](/optimization/torch2.0#torchcompile), which allows for much faster inference speed. Additionally, models can be serialized and stored in a quantized datatype to save disk space with torchao. Find examples and benchmarks in the gists below.
|
||||
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
|
||||
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
|
||||
|
||||
## CogVideoXPipeline
|
||||
|
||||
[[autodoc]] CogVideoXPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## CogVideoXVideoToVideoPipeline
|
||||
|
||||
[[autodoc]] CogVideoXVideoToVideoPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## CogVideoXPipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput
|
||||
[[autodoc]] pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput
|
||||
|
||||
@@ -314,11 +314,12 @@ def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_di
|
||||
for x, y in zip(modifier_token_id, args.modifier_token):
|
||||
learned_embeds_dict = {}
|
||||
learned_embeds_dict[y] = learned_embeds[x]
|
||||
filename = f"{output_dir}/{y}.bin"
|
||||
|
||||
if safe_serialization:
|
||||
filename = f"{output_dir}/{y}.safetensors"
|
||||
safetensors.torch.save_file(learned_embeds_dict, filename, metadata={"format": "pt"})
|
||||
else:
|
||||
filename = f"{output_dir}/{y}.bin"
|
||||
torch.save(learned_embeds_dict, filename)
|
||||
|
||||
|
||||
@@ -1040,17 +1041,22 @@ def main(args):
|
||||
)
|
||||
|
||||
# Scheduler and math around the number of training steps.
|
||||
overrode_max_train_steps = False
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
|
||||
num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
|
||||
if args.max_train_steps is None:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
overrode_max_train_steps = True
|
||||
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
|
||||
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
|
||||
num_training_steps_for_scheduler = (
|
||||
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes
|
||||
)
|
||||
else:
|
||||
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
args.lr_scheduler,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
||||
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
||||
num_warmup_steps=num_warmup_steps_for_scheduler,
|
||||
num_training_steps=num_training_steps_for_scheduler,
|
||||
)
|
||||
|
||||
# Prepare everything with our `accelerator`.
|
||||
@@ -1065,8 +1071,14 @@ def main(args):
|
||||
|
||||
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
if overrode_max_train_steps:
|
||||
if args.max_train_steps is None:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes:
|
||||
logger.warning(
|
||||
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
|
||||
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
|
||||
f"This inconsistency may result in the learning rate scheduler not functioning properly."
|
||||
)
|
||||
# Afterwards we recalculate our number of training epochs
|
||||
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
|
||||
|
||||
@@ -255,6 +255,7 @@ else:
|
||||
"BlipDiffusionPipeline",
|
||||
"CLIPImageProjection",
|
||||
"CogVideoXPipeline",
|
||||
"CogVideoXVideoToVideoPipeline",
|
||||
"CycleDiffusionPipeline",
|
||||
"FluxControlNetPipeline",
|
||||
"FluxPipeline",
|
||||
@@ -699,6 +700,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AuraFlowPipeline,
|
||||
CLIPImageProjection,
|
||||
CogVideoXPipeline,
|
||||
CogVideoXVideoToVideoPipeline,
|
||||
CycleDiffusionPipeline,
|
||||
FluxControlNetPipeline,
|
||||
FluxPipeline,
|
||||
|
||||
@@ -14,6 +14,8 @@
|
||||
|
||||
import re
|
||||
|
||||
import torch
|
||||
|
||||
from ..utils import is_peft_version, logging
|
||||
|
||||
|
||||
@@ -326,3 +328,294 @@ def _get_alpha_name(lora_name_alpha, diffusers_name, alpha):
|
||||
prefix = "text_encoder_2."
|
||||
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
|
||||
return {new_name: alpha}
|
||||
|
||||
|
||||
# The utilities under `_convert_kohya_flux_lora_to_diffusers()`
|
||||
# are taken from https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
|
||||
# All credits go to `kohya-ss`.
|
||||
def _convert_kohya_flux_lora_to_diffusers(state_dict):
|
||||
def _convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key):
|
||||
if sds_key + ".lora_down.weight" not in sds_sd:
|
||||
return
|
||||
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
|
||||
|
||||
# scale weight by alpha and dim
|
||||
rank = down_weight.shape[0]
|
||||
alpha = sds_sd.pop(sds_key + ".alpha").item() # alpha is scalar
|
||||
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
|
||||
|
||||
# calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2
|
||||
scale_down = scale
|
||||
scale_up = 1.0
|
||||
while scale_down * 2 < scale_up:
|
||||
scale_down *= 2
|
||||
scale_up /= 2
|
||||
|
||||
ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down
|
||||
ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up
|
||||
|
||||
def _convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
|
||||
if sds_key + ".lora_down.weight" not in sds_sd:
|
||||
return
|
||||
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
|
||||
up_weight = sds_sd.pop(sds_key + ".lora_up.weight")
|
||||
sd_lora_rank = down_weight.shape[0]
|
||||
|
||||
# scale weight by alpha and dim
|
||||
alpha = sds_sd.pop(sds_key + ".alpha")
|
||||
scale = alpha / sd_lora_rank
|
||||
|
||||
# calculate scale_down and scale_up
|
||||
scale_down = scale
|
||||
scale_up = 1.0
|
||||
while scale_down * 2 < scale_up:
|
||||
scale_down *= 2
|
||||
scale_up /= 2
|
||||
|
||||
down_weight = down_weight * scale_down
|
||||
up_weight = up_weight * scale_up
|
||||
|
||||
# calculate dims if not provided
|
||||
num_splits = len(ait_keys)
|
||||
if dims is None:
|
||||
dims = [up_weight.shape[0] // num_splits] * num_splits
|
||||
else:
|
||||
assert sum(dims) == up_weight.shape[0]
|
||||
|
||||
# check upweight is sparse or not
|
||||
is_sparse = False
|
||||
if sd_lora_rank % num_splits == 0:
|
||||
ait_rank = sd_lora_rank // num_splits
|
||||
is_sparse = True
|
||||
i = 0
|
||||
for j in range(len(dims)):
|
||||
for k in range(len(dims)):
|
||||
if j == k:
|
||||
continue
|
||||
is_sparse = is_sparse and torch.all(
|
||||
up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0
|
||||
)
|
||||
i += dims[j]
|
||||
if is_sparse:
|
||||
logger.info(f"weight is sparse: {sds_key}")
|
||||
|
||||
# make ai-toolkit weight
|
||||
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
|
||||
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
|
||||
if not is_sparse:
|
||||
# down_weight is copied to each split
|
||||
ait_sd.update({k: down_weight for k in ait_down_keys})
|
||||
|
||||
# up_weight is split to each split
|
||||
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
|
||||
else:
|
||||
# down_weight is chunked to each split
|
||||
ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) # noqa: C416
|
||||
|
||||
# up_weight is sparse: only non-zero values are copied to each split
|
||||
i = 0
|
||||
for j in range(len(dims)):
|
||||
ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous()
|
||||
i += dims[j]
|
||||
|
||||
def _convert_sd_scripts_to_ai_toolkit(sds_sd):
|
||||
ait_sd = {}
|
||||
for i in range(19):
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_img_attn_proj",
|
||||
f"transformer.transformer_blocks.{i}.attn.to_out.0",
|
||||
)
|
||||
_convert_to_ai_toolkit_cat(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_img_attn_qkv",
|
||||
[
|
||||
f"transformer.transformer_blocks.{i}.attn.to_q",
|
||||
f"transformer.transformer_blocks.{i}.attn.to_k",
|
||||
f"transformer.transformer_blocks.{i}.attn.to_v",
|
||||
],
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_img_mlp_0",
|
||||
f"transformer.transformer_blocks.{i}.ff.net.0.proj",
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_img_mlp_2",
|
||||
f"transformer.transformer_blocks.{i}.ff.net.2",
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_img_mod_lin",
|
||||
f"transformer.transformer_blocks.{i}.norm1.linear",
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_txt_attn_proj",
|
||||
f"transformer.transformer_blocks.{i}.attn.to_add_out",
|
||||
)
|
||||
_convert_to_ai_toolkit_cat(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_txt_attn_qkv",
|
||||
[
|
||||
f"transformer.transformer_blocks.{i}.attn.add_q_proj",
|
||||
f"transformer.transformer_blocks.{i}.attn.add_k_proj",
|
||||
f"transformer.transformer_blocks.{i}.attn.add_v_proj",
|
||||
],
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_txt_mlp_0",
|
||||
f"transformer.transformer_blocks.{i}.ff_context.net.0.proj",
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_txt_mlp_2",
|
||||
f"transformer.transformer_blocks.{i}.ff_context.net.2",
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_double_blocks_{i}_txt_mod_lin",
|
||||
f"transformer.transformer_blocks.{i}.norm1_context.linear",
|
||||
)
|
||||
|
||||
for i in range(38):
|
||||
_convert_to_ai_toolkit_cat(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_single_blocks_{i}_linear1",
|
||||
[
|
||||
f"transformer.single_transformer_blocks.{i}.attn.to_q",
|
||||
f"transformer.single_transformer_blocks.{i}.attn.to_k",
|
||||
f"transformer.single_transformer_blocks.{i}.attn.to_v",
|
||||
f"transformer.single_transformer_blocks.{i}.proj_mlp",
|
||||
],
|
||||
dims=[3072, 3072, 3072, 12288],
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_single_blocks_{i}_linear2",
|
||||
f"transformer.single_transformer_blocks.{i}.proj_out",
|
||||
)
|
||||
_convert_to_ai_toolkit(
|
||||
sds_sd,
|
||||
ait_sd,
|
||||
f"lora_unet_single_blocks_{i}_modulation_lin",
|
||||
f"transformer.single_transformer_blocks.{i}.norm.linear",
|
||||
)
|
||||
|
||||
if len(sds_sd) > 0:
|
||||
logger.warning(f"Unsuppored keys for ai-toolkit: {sds_sd.keys()}")
|
||||
|
||||
return ait_sd
|
||||
|
||||
return _convert_sd_scripts_to_ai_toolkit(state_dict)
|
||||
|
||||
|
||||
# Adapted from https://gist.github.com/Leommm-byte/6b331a1e9bd53271210b26543a7065d6
|
||||
# Some utilities were reused from
|
||||
# https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
|
||||
def _convert_xlabs_flux_lora_to_diffusers(old_state_dict):
|
||||
new_state_dict = {}
|
||||
orig_keys = list(old_state_dict.keys())
|
||||
|
||||
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
|
||||
down_weight = sds_sd.pop(sds_key)
|
||||
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))
|
||||
|
||||
# calculate dims if not provided
|
||||
num_splits = len(ait_keys)
|
||||
if dims is None:
|
||||
dims = [up_weight.shape[0] // num_splits] * num_splits
|
||||
else:
|
||||
assert sum(dims) == up_weight.shape[0]
|
||||
|
||||
# make ai-toolkit weight
|
||||
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
|
||||
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
|
||||
|
||||
# down_weight is copied to each split
|
||||
ait_sd.update({k: down_weight for k in ait_down_keys})
|
||||
|
||||
# up_weight is split to each split
|
||||
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
|
||||
|
||||
for old_key in orig_keys:
|
||||
# Handle double_blocks
|
||||
if old_key.startswith(("diffusion_model.double_blocks", "double_blocks")):
|
||||
block_num = re.search(r"double_blocks\.(\d+)", old_key).group(1)
|
||||
new_key = f"transformer.transformer_blocks.{block_num}"
|
||||
|
||||
if "processor.proj_lora1" in old_key:
|
||||
new_key += ".attn.to_out.0"
|
||||
elif "processor.proj_lora2" in old_key:
|
||||
new_key += ".attn.to_add_out"
|
||||
elif "processor.qkv_lora1" in old_key and "up" not in old_key:
|
||||
handle_qkv(
|
||||
old_state_dict,
|
||||
new_state_dict,
|
||||
old_key,
|
||||
[
|
||||
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
|
||||
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
|
||||
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
|
||||
],
|
||||
)
|
||||
# continue
|
||||
elif "processor.qkv_lora2" in old_key and "up" not in old_key:
|
||||
handle_qkv(
|
||||
old_state_dict,
|
||||
new_state_dict,
|
||||
old_key,
|
||||
[
|
||||
f"transformer.transformer_blocks.{block_num}.attn.to_q",
|
||||
f"transformer.transformer_blocks.{block_num}.attn.to_k",
|
||||
f"transformer.transformer_blocks.{block_num}.attn.to_v",
|
||||
],
|
||||
)
|
||||
# continue
|
||||
|
||||
if "down" in old_key:
|
||||
new_key += ".lora_A.weight"
|
||||
elif "up" in old_key:
|
||||
new_key += ".lora_B.weight"
|
||||
|
||||
# Handle single_blocks
|
||||
elif old_key.startswith("diffusion_model.single_blocks", "single_blocks"):
|
||||
block_num = re.search(r"single_blocks\.(\d+)", old_key).group(1)
|
||||
new_key = f"transformer.single_transformer_blocks.{block_num}"
|
||||
|
||||
if "proj_lora1" in old_key or "proj_lora2" in old_key:
|
||||
new_key += ".proj_out"
|
||||
elif "qkv_lora1" in old_key or "qkv_lora2" in old_key:
|
||||
new_key += ".norm.linear"
|
||||
|
||||
if "down" in old_key:
|
||||
new_key += ".lora_A.weight"
|
||||
elif "up" in old_key:
|
||||
new_key += ".lora_B.weight"
|
||||
|
||||
else:
|
||||
# Handle other potential key patterns here
|
||||
new_key = old_key
|
||||
|
||||
# Since we already handle qkv above.
|
||||
if "qkv" not in old_key:
|
||||
new_state_dict[new_key] = old_state_dict.pop(old_key)
|
||||
|
||||
if len(old_state_dict) > 0:
|
||||
raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")
|
||||
|
||||
return new_state_dict
|
||||
|
||||
@@ -31,7 +31,12 @@ from ..utils import (
|
||||
scale_lora_layers,
|
||||
)
|
||||
from .lora_base import LoraBaseMixin
|
||||
from .lora_conversion_utils import _convert_non_diffusers_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers
|
||||
from .lora_conversion_utils import (
|
||||
_convert_kohya_flux_lora_to_diffusers,
|
||||
_convert_non_diffusers_lora_to_diffusers,
|
||||
_convert_xlabs_flux_lora_to_diffusers,
|
||||
_maybe_map_sgm_blocks_to_diffusers,
|
||||
)
|
||||
|
||||
|
||||
if is_transformers_available():
|
||||
@@ -1583,6 +1588,20 @@ class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
allow_pickle=allow_pickle,
|
||||
)
|
||||
|
||||
# TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
|
||||
|
||||
is_kohya = any(".lora_down.weight" in k for k in state_dict)
|
||||
if is_kohya:
|
||||
state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
|
||||
# Kohya already takes care of scaling the LoRA parameters with alpha.
|
||||
return (state_dict, None) if return_alphas else state_dict
|
||||
|
||||
is_xlabs = any("processor" in k for k in state_dict)
|
||||
if is_xlabs:
|
||||
state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
|
||||
# xlabs doesn't use `alpha`.
|
||||
return (state_dict, None) if return_alphas else state_dict
|
||||
|
||||
# For state dicts like
|
||||
# https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
|
||||
keys = list(state_dict.keys())
|
||||
|
||||
@@ -91,11 +91,11 @@ DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
|
||||
"xl_inpaint": {"pretrained_model_name_or_path": "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"},
|
||||
"playground-v2-5": {"pretrained_model_name_or_path": "playgroundai/playground-v2.5-1024px-aesthetic"},
|
||||
"upscale": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-x4-upscaler"},
|
||||
"inpainting": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-inpainting"},
|
||||
"inpainting": {"pretrained_model_name_or_path": "Lykon/dreamshaper-8-inpainting"},
|
||||
"inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"},
|
||||
"controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"},
|
||||
"v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"},
|
||||
"v1": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5"},
|
||||
"v1": {"pretrained_model_name_or_path": "Lykon/dreamshaper-8"},
|
||||
"stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"},
|
||||
"stable_cascade_stage_b_lite": {
|
||||
"pretrained_model_name_or_path": "stabilityai/stable-cascade",
|
||||
|
||||
@@ -972,15 +972,32 @@ class FreeNoiseTransformerBlock(nn.Module):
|
||||
return frame_indices
|
||||
|
||||
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
|
||||
if weighting_scheme == "pyramid":
|
||||
if weighting_scheme == "flat":
|
||||
weights = [1.0] * num_frames
|
||||
|
||||
elif weighting_scheme == "pyramid":
|
||||
if num_frames % 2 == 0:
|
||||
# num_frames = 4 => [1, 2, 2, 1]
|
||||
weights = list(range(1, num_frames // 2 + 1))
|
||||
mid = num_frames // 2
|
||||
weights = list(range(1, mid + 1))
|
||||
weights = weights + weights[::-1]
|
||||
else:
|
||||
# num_frames = 5 => [1, 2, 3, 2, 1]
|
||||
weights = list(range(1, num_frames // 2 + 1))
|
||||
weights = weights + [num_frames // 2 + 1] + weights[::-1]
|
||||
mid = (num_frames + 1) // 2
|
||||
weights = list(range(1, mid))
|
||||
weights = weights + [mid] + weights[::-1]
|
||||
|
||||
elif weighting_scheme == "delayed_reverse_sawtooth":
|
||||
if num_frames % 2 == 0:
|
||||
# num_frames = 4 => [0.01, 2, 2, 1]
|
||||
mid = num_frames // 2
|
||||
weights = [0.01] * (mid - 1) + [mid]
|
||||
weights = weights + list(range(mid, 0, -1))
|
||||
else:
|
||||
# num_frames = 5 => [0.01, 0.01, 3, 2, 1]
|
||||
mid = (num_frames + 1) // 2
|
||||
weights = [0.01] * mid
|
||||
weights = weights + list(range(mid, 0, -1))
|
||||
else:
|
||||
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
|
||||
|
||||
|
||||
@@ -999,6 +999,7 @@ class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
# setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different
|
||||
# number of temporal frames.
|
||||
self.num_latent_frames_batch_size = 2
|
||||
self.num_sample_frames_batch_size = 8
|
||||
|
||||
# We make the minimum height and width of sample for tiling half that of the generally supported
|
||||
self.tile_sample_min_height = sample_height // 2
|
||||
@@ -1082,12 +1083,27 @@ class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
self.use_slicing = False
|
||||
|
||||
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
# TODO: Implement context parallel cache
|
||||
# TODO: Implement tiled encoding
|
||||
h = self.encoder(x)
|
||||
if self.quant_conv is not None:
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
batch_size, num_channels, num_frames, height, width = x.shape
|
||||
|
||||
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
||||
return self.tiled_encode(x)
|
||||
|
||||
frame_batch_size = self.num_sample_frames_batch_size
|
||||
enc = []
|
||||
for i in range(num_frames // frame_batch_size):
|
||||
remaining_frames = num_frames % frame_batch_size
|
||||
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
|
||||
end_frame = frame_batch_size * (i + 1) + remaining_frames
|
||||
x_intermediate = x[:, :, start_frame:end_frame]
|
||||
x_intermediate = self.encoder(x_intermediate)
|
||||
if self.quant_conv is not None:
|
||||
x_intermediate = self.quant_conv(x_intermediate)
|
||||
enc.append(x_intermediate)
|
||||
|
||||
self._clear_fake_context_parallel_cache()
|
||||
enc = torch.cat(enc, dim=2)
|
||||
|
||||
return enc
|
||||
|
||||
@apply_forward_hook
|
||||
def encode(
|
||||
@@ -1102,7 +1118,7 @@ class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
The latent representations of the encoded images. If `return_dict` is True, a
|
||||
The latent representations of the encoded videos. If `return_dict` is True, a
|
||||
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
||||
"""
|
||||
if self.use_slicing and x.shape[0] > 1:
|
||||
@@ -1112,6 +1128,7 @@ class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
h = self._encode(x)
|
||||
|
||||
posterior = DiagonalGaussianDistribution(h)
|
||||
|
||||
if not return_dict:
|
||||
return (posterior,)
|
||||
return AutoencoderKLOutput(latent_dist=posterior)
|
||||
@@ -1183,6 +1200,75 @@ class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
)
|
||||
return b
|
||||
|
||||
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
r"""Encode a batch of images using a tiled encoder.
|
||||
|
||||
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
||||
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
||||
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
||||
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
||||
output, but they should be much less noticeable.
|
||||
|
||||
Args:
|
||||
x (`torch.Tensor`): Input batch of videos.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The latent representation of the encoded videos.
|
||||
"""
|
||||
# For a rough memory estimate, take a look at the `tiled_decode` method.
|
||||
batch_size, num_channels, num_frames, height, width = x.shape
|
||||
|
||||
overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height))
|
||||
overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width))
|
||||
blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height)
|
||||
blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width)
|
||||
row_limit_height = self.tile_latent_min_height - blend_extent_height
|
||||
row_limit_width = self.tile_latent_min_width - blend_extent_width
|
||||
frame_batch_size = self.num_sample_frames_batch_size
|
||||
|
||||
# Split x into overlapping tiles and encode them separately.
|
||||
# The tiles have an overlap to avoid seams between tiles.
|
||||
rows = []
|
||||
for i in range(0, height, overlap_height):
|
||||
row = []
|
||||
for j in range(0, width, overlap_width):
|
||||
time = []
|
||||
for k in range(num_frames // frame_batch_size):
|
||||
remaining_frames = num_frames % frame_batch_size
|
||||
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
|
||||
end_frame = frame_batch_size * (k + 1) + remaining_frames
|
||||
tile = x[
|
||||
:,
|
||||
:,
|
||||
start_frame:end_frame,
|
||||
i : i + self.tile_sample_min_height,
|
||||
j : j + self.tile_sample_min_width,
|
||||
]
|
||||
tile = self.encoder(tile)
|
||||
if self.quant_conv is not None:
|
||||
tile = self.quant_conv(tile)
|
||||
time.append(tile)
|
||||
self._clear_fake_context_parallel_cache()
|
||||
row.append(torch.cat(time, dim=2))
|
||||
rows.append(row)
|
||||
|
||||
result_rows = []
|
||||
for i, row in enumerate(rows):
|
||||
result_row = []
|
||||
for j, tile in enumerate(row):
|
||||
# blend the above tile and the left tile
|
||||
# to the current tile and add the current tile to the result row
|
||||
if i > 0:
|
||||
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
|
||||
if j > 0:
|
||||
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
|
||||
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
|
||||
result_rows.append(torch.cat(result_row, dim=4))
|
||||
|
||||
enc = torch.cat(result_rows, dim=3)
|
||||
return enc
|
||||
|
||||
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||||
r"""
|
||||
Decode a batch of images using a tiled decoder.
|
||||
|
||||
@@ -691,7 +691,6 @@ class SparseControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
|
||||
emb = self.time_embedding(t_emb, timestep_cond)
|
||||
emb = emb.repeat_interleave(sample_num_frames, dim=0)
|
||||
encoder_hidden_states = encoder_hidden_states.repeat_interleave(sample_num_frames, dim=0)
|
||||
|
||||
# 2. pre-process
|
||||
batch_size, channels, num_frames, height, width = sample.shape
|
||||
|
||||
@@ -514,7 +514,7 @@ def get_1d_rotary_pos_embed(
|
||||
linear_factor=1.0,
|
||||
ntk_factor=1.0,
|
||||
repeat_interleave_real=True,
|
||||
freqs_dtype=torch.float32, # torch.float32 (hunyuan, stable audio), torch.float64 (flux)
|
||||
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
|
||||
):
|
||||
"""
|
||||
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
||||
@@ -545,21 +545,27 @@ def get_1d_rotary_pos_embed(
|
||||
assert dim % 2 == 0
|
||||
|
||||
if isinstance(pos, int):
|
||||
pos = np.arange(pos)
|
||||
pos = torch.arange(pos)
|
||||
if isinstance(pos, np.ndarray):
|
||||
pos = torch.from_numpy(pos) # type: ignore # [S]
|
||||
|
||||
theta = theta * ntk_factor
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype)[: (dim // 2)] / dim)) / linear_factor # [D/2]
|
||||
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
||||
freqs = torch.outer(t, freqs) # type: ignore # [S, D/2]
|
||||
freqs = freqs.to(pos.device)
|
||||
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
|
||||
if use_real and repeat_interleave_real:
|
||||
# flux, hunyuan-dit, cogvideox
|
||||
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
||||
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
elif use_real:
|
||||
# stable audio
|
||||
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
|
||||
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
else:
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs).float() # complex64 # [S, D/2]
|
||||
# lumina
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
||||
return freqs_cis
|
||||
|
||||
|
||||
@@ -590,11 +596,11 @@ def apply_rotary_emb(
|
||||
cos, sin = cos.to(x.device), sin.to(x.device)
|
||||
|
||||
if use_real_unbind_dim == -1:
|
||||
# Use for example in Lumina
|
||||
# Used for flux, cogvideox, hunyuan-dit
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
elif use_real_unbind_dim == -2:
|
||||
# Use for example in Stable Audio
|
||||
# Used for Stable Audio
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
||||
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
||||
else:
|
||||
@@ -604,6 +610,7 @@ def apply_rotary_emb(
|
||||
|
||||
return out
|
||||
else:
|
||||
# used for lumina
|
||||
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
||||
freqs_cis = freqs_cis.unsqueeze(2)
|
||||
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
|
||||
@@ -622,7 +629,7 @@ class FluxPosEmbed(nn.Module):
|
||||
n_axes = ids.shape[-1]
|
||||
cos_out = []
|
||||
sin_out = []
|
||||
pos = ids.squeeze().float().cpu().numpy()
|
||||
pos = ids.squeeze().float()
|
||||
is_mps = ids.device.type == "mps"
|
||||
freqs_dtype = torch.float32 if is_mps else torch.float64
|
||||
for i in range(n_axes):
|
||||
|
||||
@@ -116,7 +116,7 @@ class AnimateDiffTransformer3D(nn.Module):
|
||||
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
self.norm = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
self.proj_in = nn.Linear(in_channels, inner_dim)
|
||||
|
||||
# 3. Define transformers blocks
|
||||
@@ -2178,7 +2178,6 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
|
||||
|
||||
emb = emb if aug_emb is None else emb + aug_emb
|
||||
emb = emb.repeat_interleave(repeats=num_frames, dim=0)
|
||||
encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
||||
if "image_embeds" not in added_cond_kwargs:
|
||||
|
||||
@@ -132,7 +132,7 @@ else:
|
||||
"AudioLDM2UNet2DConditionModel",
|
||||
]
|
||||
_import_structure["blip_diffusion"] = ["BlipDiffusionPipeline"]
|
||||
_import_structure["cogvideo"] = ["CogVideoXPipeline"]
|
||||
_import_structure["cogvideo"] = ["CogVideoXPipeline", "CogVideoXVideoToVideoPipeline"]
|
||||
_import_structure["controlnet"].extend(
|
||||
[
|
||||
"BlipDiffusionControlNetPipeline",
|
||||
@@ -454,7 +454,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
)
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .blip_diffusion import BlipDiffusionPipeline
|
||||
from .cogvideo import CogVideoXPipeline
|
||||
from .cogvideo import CogVideoXPipeline, CogVideoXVideoToVideoPipeline
|
||||
from .controlnet import (
|
||||
BlipDiffusionControlNetPipeline,
|
||||
StableDiffusionControlNetImg2ImgPipeline,
|
||||
|
||||
@@ -432,7 +432,6 @@ class AnimateDiffPipeline(
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
@@ -470,8 +469,8 @@ class AnimateDiffPipeline(
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
elif prompt is not None and not isinstance(prompt, (str, list, dict)):
|
||||
raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)=}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
@@ -557,11 +556,15 @@ class AnimateDiffPipeline(
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_frames: Optional[int] = 16,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
@@ -701,9 +704,10 @@ class AnimateDiffPipeline(
|
||||
self._guidance_scale = guidance_scale
|
||||
self._clip_skip = clip_skip
|
||||
self._cross_attention_kwargs = cross_attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
if prompt is not None and isinstance(prompt, (str, dict)):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
@@ -716,22 +720,39 @@ class AnimateDiffPipeline(
|
||||
text_encoder_lora_scale = (
|
||||
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
||||
)
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_videos_per_prompt,
|
||||
self.do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
if self.free_noise_enabled:
|
||||
prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
|
||||
prompt=prompt,
|
||||
num_frames=num_frames,
|
||||
device=device,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
else:
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_videos_per_prompt,
|
||||
self.do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||||
image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
@@ -783,6 +804,9 @@ class AnimateDiffPipeline(
|
||||
# 8. Denoising loop
|
||||
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
@@ -505,8 +505,8 @@ class AnimateDiffControlNetPipeline(
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
elif prompt is not None and not isinstance(prompt, (str, list, dict)):
|
||||
raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
@@ -699,6 +699,10 @@ class AnimateDiffControlNetPipeline(
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
@@ -858,9 +862,10 @@ class AnimateDiffControlNetPipeline(
|
||||
self._guidance_scale = guidance_scale
|
||||
self._clip_skip = clip_skip
|
||||
self._cross_attention_kwargs = cross_attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
if prompt is not None and isinstance(prompt, (str, dict)):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
@@ -883,22 +888,39 @@ class AnimateDiffControlNetPipeline(
|
||||
text_encoder_lora_scale = (
|
||||
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
)
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_videos_per_prompt,
|
||||
self.do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
if self.free_noise_enabled:
|
||||
prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
|
||||
prompt=prompt,
|
||||
num_frames=num_frames,
|
||||
device=device,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
else:
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_videos_per_prompt,
|
||||
self.do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||||
image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
@@ -990,6 +1012,9 @@ class AnimateDiffControlNetPipeline(
|
||||
# 8. Denoising loop
|
||||
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
@@ -1002,7 +1027,6 @@ class AnimateDiffControlNetPipeline(
|
||||
else:
|
||||
control_model_input = latent_model_input
|
||||
controlnet_prompt_embeds = prompt_embeds
|
||||
controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(num_frames, dim=0)
|
||||
|
||||
if isinstance(controlnet_keep[i], list):
|
||||
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
||||
|
||||
@@ -1143,6 +1143,8 @@ class AnimateDiffSDXLPipeline(
|
||||
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
||||
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
||||
|
||||
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
prompt_embeds = prompt_embeds.to(device)
|
||||
add_text_embeds = add_text_embeds.to(device)
|
||||
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_videos_per_prompt, 1)
|
||||
|
||||
@@ -878,6 +878,8 @@ class AnimateDiffSparseControlNetPipeline(
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
# 4. Prepare IP-Adapter embeddings
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||||
image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
|
||||
@@ -246,7 +246,6 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
@@ -299,7 +298,7 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
else:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
if prompt is not None and isinstance(prompt, (str, dict)):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
@@ -582,8 +581,8 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
elif prompt is not None and not isinstance(prompt, (str, list, dict)):
|
||||
raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
@@ -628,23 +627,20 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
video,
|
||||
height,
|
||||
width,
|
||||
num_channels_latents,
|
||||
batch_size,
|
||||
timestep,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
video: Optional[torch.Tensor] = None,
|
||||
height: int = 64,
|
||||
width: int = 64,
|
||||
num_channels_latents: int = 4,
|
||||
batch_size: int = 1,
|
||||
timestep: Optional[int] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
decode_chunk_size: int = 16,
|
||||
):
|
||||
if latents is None:
|
||||
num_frames = video.shape[1]
|
||||
else:
|
||||
num_frames = latents.shape[2]
|
||||
|
||||
add_noise: bool = False,
|
||||
) -> torch.Tensor:
|
||||
num_frames = video.shape[1] if latents is None else latents.shape[2]
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
@@ -708,8 +704,13 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
if shape != latents.shape:
|
||||
# [B, C, F, H, W]
|
||||
raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}")
|
||||
|
||||
latents = latents.to(device, dtype=dtype)
|
||||
|
||||
if add_noise:
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self.scheduler.add_noise(latents, noise, timestep)
|
||||
|
||||
return latents
|
||||
|
||||
@property
|
||||
@@ -735,6 +736,10 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
@@ -743,6 +748,7 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
enforce_inference_steps: bool = False,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 7.5,
|
||||
@@ -874,9 +880,10 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
self._guidance_scale = guidance_scale
|
||||
self._clip_skip = clip_skip
|
||||
self._cross_attention_kwargs = cross_attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
if prompt is not None and isinstance(prompt, (str, dict)):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
@@ -884,29 +891,85 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
dtype = self.dtype
|
||||
|
||||
# 3. Encode input prompt
|
||||
# 3. Prepare timesteps
|
||||
if not enforce_inference_steps:
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
||||
)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
||||
else:
|
||||
denoising_inference_steps = int(num_inference_steps / strength)
|
||||
timesteps, denoising_inference_steps = retrieve_timesteps(
|
||||
self.scheduler, denoising_inference_steps, device, timesteps, sigmas
|
||||
)
|
||||
timesteps = timesteps[-num_inference_steps:]
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
if latents is None:
|
||||
video = self.video_processor.preprocess_video(video, height=height, width=width)
|
||||
# Move the number of frames before the number of channels.
|
||||
video = video.permute(0, 2, 1, 3, 4)
|
||||
video = video.to(device=device, dtype=dtype)
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
video=video,
|
||||
height=height,
|
||||
width=width,
|
||||
num_channels_latents=num_channels_latents,
|
||||
batch_size=batch_size * num_videos_per_prompt,
|
||||
timestep=latent_timestep,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
generator=generator,
|
||||
latents=latents,
|
||||
decode_chunk_size=decode_chunk_size,
|
||||
add_noise=enforce_inference_steps,
|
||||
)
|
||||
|
||||
# 5. Encode input prompt
|
||||
text_encoder_lora_scale = (
|
||||
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
||||
)
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_videos_per_prompt,
|
||||
self.do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
num_frames = latents.shape[2]
|
||||
if self.free_noise_enabled:
|
||||
prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
|
||||
prompt=prompt,
|
||||
num_frames=num_frames,
|
||||
device=device,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
else:
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_videos_per_prompt,
|
||||
self.do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
# 6. Prepare IP-Adapter embeddings
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||||
image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
ip_adapter_image,
|
||||
@@ -916,38 +979,10 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
self.do_classifier_free_guidance,
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
||||
)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
||||
|
||||
# 5. Prepare latent variables
|
||||
if latents is None:
|
||||
video = self.video_processor.preprocess_video(video, height=height, width=width)
|
||||
# Move the number of frames before the number of channels.
|
||||
video = video.permute(0, 2, 1, 3, 4)
|
||||
video = video.to(device=device, dtype=prompt_embeds.dtype)
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
video=video,
|
||||
height=height,
|
||||
width=width,
|
||||
num_channels_latents=num_channels_latents,
|
||||
batch_size=batch_size * num_videos_per_prompt,
|
||||
timestep=latent_timestep,
|
||||
dtype=prompt_embeds.dtype,
|
||||
device=device,
|
||||
generator=generator,
|
||||
latents=latents,
|
||||
decode_chunk_size=decode_chunk_size,
|
||||
)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Add image embeds for IP-Adapter
|
||||
# 8. Add image embeds for IP-Adapter
|
||||
added_cond_kwargs = (
|
||||
{"image_embeds": image_embeds}
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
||||
@@ -967,9 +1002,12 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
self._num_timesteps = len(timesteps)
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
|
||||
# 8. Denoising loop
|
||||
# 9. Denoising loop
|
||||
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
@@ -1005,14 +1043,14 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
# 9. Post-processing
|
||||
# 10. Post-processing
|
||||
if output_type == "latent":
|
||||
video = latents
|
||||
else:
|
||||
video_tensor = self.decode_latents(latents, decode_chunk_size)
|
||||
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
||||
|
||||
# 10. Offload all models
|
||||
# 11. Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
|
||||
@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_cogvideox"] = ["CogVideoXPipeline"]
|
||||
_import_structure["pipeline_cogvideox_video2video"] = ["CogVideoXVideoToVideoPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -33,6 +34,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_cogvideox import CogVideoXPipeline
|
||||
from .pipeline_cogvideox_video2video import CogVideoXVideoToVideoPipeline
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
@@ -15,7 +15,6 @@
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@@ -37,6 +36,7 @@ from ...utils import (
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from .pipeline_output import CogVideoXPipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -144,21 +144,6 @@ def retrieve_timesteps(
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
@dataclass
|
||||
class CogVideoXPipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for CogVideo pipelines.
|
||||
|
||||
Args:
|
||||
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
frames: torch.Tensor
|
||||
|
||||
|
||||
class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
||||
r"""
|
||||
Pipeline for text-to-video generation using CogVideoX.
|
||||
|
||||
@@ -0,0 +1,812 @@
|
||||
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import T5EncoderModel, T5Tokenizer
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
||||
from ...models.embeddings import get_3d_rotary_pos_embed
|
||||
from ...pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
||||
from ...utils import (
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from .pipeline_output import CogVideoXPipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from diffusers import CogVideoXDPMScheduler, CogVideoXVideoToVideoPipeline
|
||||
>>> from diffusers.utils import export_to_video, load_video
|
||||
|
||||
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
|
||||
>>> pipe = CogVideoXVideoToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
|
||||
>>> pipe.to("cuda")
|
||||
>>> pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
>>> input_video = load_video(
|
||||
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
|
||||
... )
|
||||
>>> prompt = (
|
||||
... "An astronaut stands triumphantly at the peak of a towering mountain. Panorama of rugged peaks and "
|
||||
... "valleys. Very futuristic vibe and animated aesthetic. Highlights of purple and golden colors in "
|
||||
... "the scene. The sky is looks like an animated/cartoonish dream of galaxies, nebulae, stars, planets, "
|
||||
... "moons, but the remainder of the scene is mostly realistic."
|
||||
... )
|
||||
|
||||
>>> video = pipe(
|
||||
... video=input_video, prompt=prompt, strength=0.8, guidance_scale=6, num_inference_steps=50
|
||||
... ).frames[0]
|
||||
>>> export_to_video(video, "output.mp4", fps=8)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
||||
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
||||
tw = tgt_width
|
||||
th = tgt_height
|
||||
h, w = src
|
||||
r = h / w
|
||||
if r > (th / tw):
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h))
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
||||
def retrieve_latents(
|
||||
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
||||
):
|
||||
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
||||
return encoder_output.latent_dist.sample(generator)
|
||||
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
||||
return encoder_output.latent_dist.mode()
|
||||
elif hasattr(encoder_output, "latents"):
|
||||
return encoder_output.latents
|
||||
else:
|
||||
raise AttributeError("Could not access latents of provided encoder_output")
|
||||
|
||||
|
||||
class CogVideoXVideoToVideoPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for video-to-video generation using CogVideoX.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
||||
text_encoder ([`T5EncoderModel`]):
|
||||
Frozen text-encoder. CogVideoX uses
|
||||
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
|
||||
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
||||
tokenizer (`T5Tokenizer`):
|
||||
Tokenizer of class
|
||||
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
||||
transformer ([`CogVideoXTransformer3DModel`]):
|
||||
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
||||
"""
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: T5Tokenizer,
|
||||
text_encoder: T5EncoderModel,
|
||||
vae: AutoencoderKLCogVideoX,
|
||||
transformer: CogVideoXTransformer3DModel,
|
||||
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
self.vae_scale_factor_spatial = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
self.vae_scale_factor_temporal = (
|
||||
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
||||
)
|
||||
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
||||
|
||||
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_videos_per_prompt: int = 1,
|
||||
max_sequence_length: int = 226,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because `max_sequence_length` is set to "
|
||||
f" {max_sequence_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
num_videos_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
max_sequence_length: int = 226,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use classifier free guidance or not.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device
|
||||
dtype: (`torch.dtype`, *optional*):
|
||||
torch dtype
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=prompt,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
|
||||
if prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=negative_prompt,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
video: Optional[torch.Tensor] = None,
|
||||
batch_size: int = 1,
|
||||
num_channels_latents: int = 16,
|
||||
height: int = 60,
|
||||
width: int = 90,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
timestep: Optional[torch.Tensor] = None,
|
||||
):
|
||||
num_frames = (video.size(2) - 1) // self.vae_scale_factor_temporal + 1 if latents is None else latents.size(1)
|
||||
|
||||
shape = (
|
||||
batch_size,
|
||||
num_frames,
|
||||
num_channels_latents,
|
||||
height // self.vae_scale_factor_spatial,
|
||||
width // self.vae_scale_factor_spatial,
|
||||
)
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
if isinstance(generator, list):
|
||||
if len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
init_latents = [
|
||||
retrieve_latents(self.vae.encode(video[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
|
||||
]
|
||||
else:
|
||||
init_latents = [retrieve_latents(self.vae.encode(vid.unsqueeze(0)), generator) for vid in video]
|
||||
|
||||
init_latents = torch.cat(init_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
||||
init_latents = self.vae.config.scaling_factor * init_latents
|
||||
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents
|
||||
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
||||
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
frames = self.vae.decode(latents).sample
|
||||
return frames
|
||||
|
||||
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps
|
||||
def get_timesteps(self, num_inference_steps, timesteps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep, 0)
|
||||
timesteps = timesteps[t_start * self.scheduler.order :]
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
strength,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
video=None,
|
||||
latents=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
if video is not None and latents is not None:
|
||||
raise ValueError("Only one of `video` or `latents` should be provided")
|
||||
|
||||
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections
|
||||
def fuse_qkv_projections(self) -> None:
|
||||
r"""Enables fused QKV projections."""
|
||||
self.fusing_transformer = True
|
||||
self.transformer.fuse_qkv_projections()
|
||||
|
||||
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self) -> None:
|
||||
r"""Disable QKV projection fusion if enabled."""
|
||||
if not self.fusing_transformer:
|
||||
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
||||
else:
|
||||
self.transformer.unfuse_qkv_projections()
|
||||
self.fusing_transformer = False
|
||||
|
||||
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._prepare_rotary_positional_embeddings
|
||||
def _prepare_rotary_positional_embeddings(
|
||||
self,
|
||||
height: int,
|
||||
width: int,
|
||||
num_frames: int,
|
||||
device: torch.device,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
||||
|
||||
grid_crops_coords = get_resize_crop_region_for_grid(
|
||||
(grid_height, grid_width), base_size_width, base_size_height
|
||||
)
|
||||
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
||||
embed_dim=self.transformer.config.attention_head_dim,
|
||||
crops_coords=grid_crops_coords,
|
||||
grid_size=(grid_height, grid_width),
|
||||
temporal_size=num_frames,
|
||||
)
|
||||
|
||||
freqs_cos = freqs_cos.to(device=device)
|
||||
freqs_sin = freqs_sin.to(device=device)
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
video: List[Image.Image] = None,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
height: int = 480,
|
||||
width: int = 720,
|
||||
num_inference_steps: int = 50,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
strength: float = 0.8,
|
||||
guidance_scale: float = 6,
|
||||
use_dynamic_cfg: bool = False,
|
||||
num_videos_per_prompt: int = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: str = "pil",
|
||||
return_dict: bool = True,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 226,
|
||||
) -> Union[CogVideoXPipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
video (`List[PIL.Image.Image]`):
|
||||
The input video to condition the generation on. Must be a list of images/frames of the video.
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
strength (`float`, *optional*, defaults to 0.8):
|
||||
Higher strength leads to more differences between original video and generated video.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of videos to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, defaults to `226`):
|
||||
Maximum sequence length in encoded prompt. Must be consistent with
|
||||
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
|
||||
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
|
||||
num_videos_per_prompt = 1
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
strength,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
do_classifier_free_guidance,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 5. Prepare latents
|
||||
if latents is None:
|
||||
video = self.video_processor.preprocess_video(video, height=height, width=width)
|
||||
video = video.to(device=device, dtype=prompt_embeds.dtype)
|
||||
|
||||
latent_channels = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
video,
|
||||
batch_size * num_videos_per_prompt,
|
||||
latent_channels,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
latent_timestep,
|
||||
)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Create rotary embeds if required
|
||||
image_rotary_emb = (
|
||||
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
||||
if self.transformer.config.use_rotary_positional_embeddings
|
||||
else None
|
||||
)
|
||||
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
# for DPM-solver++
|
||||
old_pred_original_sample = None
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timestep,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
noise_pred = noise_pred.float()
|
||||
|
||||
# perform guidance
|
||||
if use_dynamic_cfg:
|
||||
self._guidance_scale = 1 + guidance_scale * (
|
||||
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
else:
|
||||
latents, old_pred_original_sample = self.scheduler.step(
|
||||
noise_pred,
|
||||
old_pred_original_sample,
|
||||
t,
|
||||
timesteps[i - 1] if i > 0 else None,
|
||||
latents,
|
||||
**extra_step_kwargs,
|
||||
return_dict=False,
|
||||
)
|
||||
latents = latents.to(prompt_embeds.dtype)
|
||||
|
||||
# call the callback, if provided
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if not output_type == "latent":
|
||||
video = self.decode_latents(latents)
|
||||
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
||||
else:
|
||||
video = latents
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (video,)
|
||||
|
||||
return CogVideoXPipelineOutput(frames=video)
|
||||
20
src/diffusers/pipelines/cogvideo/pipeline_output.py
Normal file
20
src/diffusers/pipelines/cogvideo/pipeline_output.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.utils import BaseOutput
|
||||
|
||||
|
||||
@dataclass
|
||||
class CogVideoXPipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for CogVideo pipelines.
|
||||
|
||||
Args:
|
||||
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
frames: torch.Tensor
|
||||
@@ -536,7 +536,7 @@ class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 28,
|
||||
timesteps: List[int] = None,
|
||||
guidance_scale: float = 7.0,
|
||||
guidance_scale: float = 3.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional, Union
|
||||
from typing import Callable, Dict, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -22,6 +22,7 @@ from ..models.unets.unet_motion_model import (
|
||||
DownBlockMotion,
|
||||
UpBlockMotion,
|
||||
)
|
||||
from ..pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ..utils import logging
|
||||
from ..utils.torch_utils import randn_tensor
|
||||
|
||||
@@ -98,6 +99,142 @@ class AnimateDiffFreeNoiseMixin:
|
||||
free_noise_transfomer_block.state_dict(), strict=True
|
||||
)
|
||||
|
||||
def _check_inputs_free_noise(
|
||||
self,
|
||||
prompt,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
num_frames,
|
||||
) -> None:
|
||||
if not isinstance(prompt, (str, dict)):
|
||||
raise ValueError(f"Expected `prompt` to have type `str` or `dict` but found {type(prompt)=}")
|
||||
|
||||
if negative_prompt is not None:
|
||||
if not isinstance(negative_prompt, (str, dict)):
|
||||
raise ValueError(
|
||||
f"Expected `negative_prompt` to have type `str` or `dict` but found {type(negative_prompt)=}"
|
||||
)
|
||||
|
||||
if prompt_embeds is not None or negative_prompt_embeds is not None:
|
||||
raise ValueError("`prompt_embeds` and `negative_prompt_embeds` is not supported in FreeNoise yet.")
|
||||
|
||||
frame_indices = [isinstance(x, int) for x in prompt.keys()]
|
||||
frame_prompts = [isinstance(x, str) for x in prompt.values()]
|
||||
min_frame = min(list(prompt.keys()))
|
||||
max_frame = max(list(prompt.keys()))
|
||||
|
||||
if not all(frame_indices):
|
||||
raise ValueError("Expected integer keys in `prompt` dict for FreeNoise.")
|
||||
if not all(frame_prompts):
|
||||
raise ValueError("Expected str values in `prompt` dict for FreeNoise.")
|
||||
if min_frame != 0:
|
||||
raise ValueError("The minimum frame index in `prompt` dict must be 0 as a starting prompt is necessary.")
|
||||
if max_frame >= num_frames:
|
||||
raise ValueError(
|
||||
f"The maximum frame index in `prompt` dict must be lesser than {num_frames=} and follow 0-based indexing."
|
||||
)
|
||||
|
||||
def _encode_prompt_free_noise(
|
||||
self,
|
||||
prompt: Union[str, Dict[int, str]],
|
||||
num_frames: int,
|
||||
device: torch.device,
|
||||
num_videos_per_prompt: int,
|
||||
do_classifier_free_guidance: bool,
|
||||
negative_prompt: Optional[Union[str, Dict[int, str]]] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
lora_scale: Optional[float] = None,
|
||||
clip_skip: Optional[int] = None,
|
||||
) -> torch.Tensor:
|
||||
if negative_prompt is None:
|
||||
negative_prompt = ""
|
||||
|
||||
# Ensure that we have a dictionary of prompts
|
||||
if isinstance(prompt, str):
|
||||
prompt = {0: prompt}
|
||||
if isinstance(negative_prompt, str):
|
||||
negative_prompt = {0: negative_prompt}
|
||||
|
||||
self._check_inputs_free_noise(prompt, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames)
|
||||
|
||||
# Sort the prompts based on frame indices
|
||||
prompt = dict(sorted(prompt.items()))
|
||||
negative_prompt = dict(sorted(negative_prompt.items()))
|
||||
|
||||
# Ensure that we have a prompt for the last frame index
|
||||
prompt[num_frames - 1] = prompt[list(prompt.keys())[-1]]
|
||||
negative_prompt[num_frames - 1] = negative_prompt[list(negative_prompt.keys())[-1]]
|
||||
|
||||
frame_indices = list(prompt.keys())
|
||||
frame_prompts = list(prompt.values())
|
||||
frame_negative_indices = list(negative_prompt.keys())
|
||||
frame_negative_prompts = list(negative_prompt.values())
|
||||
|
||||
# Generate and interpolate positive prompts
|
||||
prompt_embeds, _ = self.encode_prompt(
|
||||
prompt=frame_prompts,
|
||||
device=device,
|
||||
num_images_per_prompt=num_videos_per_prompt,
|
||||
do_classifier_free_guidance=False,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
lora_scale=lora_scale,
|
||||
clip_skip=clip_skip,
|
||||
)
|
||||
|
||||
shape = (num_frames, *prompt_embeds.shape[1:])
|
||||
prompt_interpolation_embeds = prompt_embeds.new_zeros(shape)
|
||||
|
||||
for i in range(len(frame_indices) - 1):
|
||||
start_frame = frame_indices[i]
|
||||
end_frame = frame_indices[i + 1]
|
||||
start_tensor = prompt_embeds[i].unsqueeze(0)
|
||||
end_tensor = prompt_embeds[i + 1].unsqueeze(0)
|
||||
|
||||
prompt_interpolation_embeds[start_frame : end_frame + 1] = self._free_noise_prompt_interpolation_callback(
|
||||
start_frame, end_frame, start_tensor, end_tensor
|
||||
)
|
||||
|
||||
# Generate and interpolate negative prompts
|
||||
negative_prompt_embeds = None
|
||||
negative_prompt_interpolation_embeds = None
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
_, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt=[""] * len(frame_negative_prompts),
|
||||
device=device,
|
||||
num_images_per_prompt=num_videos_per_prompt,
|
||||
do_classifier_free_guidance=True,
|
||||
negative_prompt=frame_negative_prompts,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
lora_scale=lora_scale,
|
||||
clip_skip=clip_skip,
|
||||
)
|
||||
|
||||
negative_prompt_interpolation_embeds = negative_prompt_embeds.new_zeros(shape)
|
||||
|
||||
for i in range(len(frame_negative_indices) - 1):
|
||||
start_frame = frame_negative_indices[i]
|
||||
end_frame = frame_negative_indices[i + 1]
|
||||
start_tensor = negative_prompt_embeds[i].unsqueeze(0)
|
||||
end_tensor = negative_prompt_embeds[i + 1].unsqueeze(0)
|
||||
|
||||
negative_prompt_interpolation_embeds[
|
||||
start_frame : end_frame + 1
|
||||
] = self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor)
|
||||
|
||||
prompt_embeds = prompt_interpolation_embeds
|
||||
negative_prompt_embeds = negative_prompt_interpolation_embeds
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
def _prepare_latents_free_noise(
|
||||
self,
|
||||
batch_size: int,
|
||||
@@ -172,12 +309,29 @@ class AnimateDiffFreeNoiseMixin:
|
||||
latents = latents[:, :, :num_frames]
|
||||
return latents
|
||||
|
||||
def _lerp(
|
||||
self, start_index: int, end_index: int, start_tensor: torch.Tensor, end_tensor: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
num_indices = end_index - start_index + 1
|
||||
interpolated_tensors = []
|
||||
|
||||
for i in range(num_indices):
|
||||
alpha = i / (num_indices - 1)
|
||||
interpolated_tensor = (1 - alpha) * start_tensor + alpha * end_tensor
|
||||
interpolated_tensors.append(interpolated_tensor)
|
||||
|
||||
interpolated_tensors = torch.cat(interpolated_tensors)
|
||||
return interpolated_tensors
|
||||
|
||||
def enable_free_noise(
|
||||
self,
|
||||
context_length: Optional[int] = 16,
|
||||
context_stride: int = 4,
|
||||
weighting_scheme: str = "pyramid",
|
||||
noise_type: str = "shuffle_context",
|
||||
prompt_interpolation_callback: Optional[
|
||||
Callable[[DiffusionPipeline, int, int, torch.Tensor, torch.Tensor], torch.Tensor]
|
||||
] = None,
|
||||
) -> None:
|
||||
r"""
|
||||
Enable long video generation using FreeNoise.
|
||||
@@ -195,13 +349,27 @@ class AnimateDiffFreeNoiseMixin:
|
||||
weighting_scheme (`str`, defaults to `pyramid`):
|
||||
Weighting scheme for averaging latents after accumulation in FreeNoise blocks. The following weighting
|
||||
schemes are supported currently:
|
||||
- "flat"
|
||||
Performs weighting averaging with a flat weight pattern: [1, 1, 1, 1, 1].
|
||||
- "pyramid"
|
||||
Peforms weighted averaging with a pyramid like weight pattern: [1, 2, 3, 2, 1].
|
||||
Performs weighted averaging with a pyramid like weight pattern: [1, 2, 3, 2, 1].
|
||||
- "delayed_reverse_sawtooth"
|
||||
Performs weighted averaging with low weights for earlier frames and high-to-low weights for
|
||||
later frames: [0.01, 0.01, 3, 2, 1].
|
||||
noise_type (`str`, defaults to "shuffle_context"):
|
||||
TODO
|
||||
Must be one of ["shuffle_context", "repeat_context", "random"].
|
||||
- "shuffle_context"
|
||||
Shuffles a fixed batch of `context_length` latents to create a final latent of size
|
||||
`num_frames`. This is usually the best setting for most generation scenarious. However, there
|
||||
might be visible repetition noticeable in the kinds of motion/animation generated.
|
||||
- "repeated_context"
|
||||
Repeats a fixed batch of `context_length` latents to create a final latent of size
|
||||
`num_frames`.
|
||||
- "random"
|
||||
The final latents are random without any repetition.
|
||||
"""
|
||||
|
||||
allowed_weighting_scheme = ["pyramid"]
|
||||
allowed_weighting_scheme = ["flat", "pyramid", "delayed_reverse_sawtooth"]
|
||||
allowed_noise_type = ["shuffle_context", "repeat_context", "random"]
|
||||
|
||||
if context_length > self.motion_adapter.config.motion_max_seq_length:
|
||||
@@ -219,6 +387,7 @@ class AnimateDiffFreeNoiseMixin:
|
||||
self._free_noise_context_stride = context_stride
|
||||
self._free_noise_weighting_scheme = weighting_scheme
|
||||
self._free_noise_noise_type = noise_type
|
||||
self._free_noise_prompt_interpolation_callback = prompt_interpolation_callback or self._lerp
|
||||
|
||||
if hasattr(self.unet.mid_block, "motion_modules"):
|
||||
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
|
||||
@@ -229,6 +398,7 @@ class AnimateDiffFreeNoiseMixin:
|
||||
self._enable_free_noise_in_block(block)
|
||||
|
||||
def disable_free_noise(self) -> None:
|
||||
r"""Disable the FreeNoise sampling mechanism."""
|
||||
self._free_noise_context_length = None
|
||||
|
||||
if hasattr(self.unet.mid_block, "motion_modules"):
|
||||
|
||||
@@ -734,6 +734,8 @@ class AnimateDiffPAGPipeline(
|
||||
elif self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||||
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
ip_adapter_image,
|
||||
@@ -805,7 +807,9 @@ class AnimateDiffPAGPipeline(
|
||||
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
|
||||
latent_model_input = torch.cat(
|
||||
[latents] * (prompt_embeds.shape[0] // num_frames // latents.shape[0])
|
||||
)
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
|
||||
@@ -824,6 +824,8 @@ class PIAPipeline(
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
|
||||
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||||
image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
ip_adapter_image,
|
||||
|
||||
@@ -272,6 +272,21 @@ class CogVideoXPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CogVideoXVideoToVideoPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CycleDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -417,6 +417,9 @@ class ModelTesterMixin:
|
||||
|
||||
@require_torch_gpu
|
||||
def test_set_attn_processor_for_determinism(self):
|
||||
if self.uses_custom_attn_processor:
|
||||
return
|
||||
|
||||
torch.use_deterministic_algorithms(False)
|
||||
if self.forward_requires_fresh_args:
|
||||
model = self.model_class(**self.init_dict)
|
||||
|
||||
@@ -32,6 +32,9 @@ class FluxTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
# We override the items here because the transformer under consideration is small.
|
||||
model_split_percents = [0.7, 0.6, 0.6]
|
||||
|
||||
# Skip setting testing with default: AttnProcessor
|
||||
uses_custom_attn_processor = True
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 1
|
||||
|
||||
@@ -51,7 +51,7 @@ class UNetMotionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase)
|
||||
|
||||
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
|
||||
time_step = torch.tensor([10]).to(torch_device)
|
||||
encoder_hidden_states = floats_tensor((batch_size, 4, 16)).to(torch_device)
|
||||
encoder_hidden_states = floats_tensor((batch_size * num_frames, 4, 16)).to(torch_device)
|
||||
|
||||
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
|
||||
|
||||
|
||||
@@ -460,6 +460,29 @@ class AnimateDiffPipelineFastTests(
|
||||
"Disabling of FreeNoise should lead to results similar to the default pipeline results",
|
||||
)
|
||||
|
||||
def test_free_noise_multi_prompt(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe: AnimateDiffPipeline = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
context_length = 8
|
||||
context_stride = 4
|
||||
pipe.enable_free_noise(context_length, context_stride)
|
||||
|
||||
# Make sure that pipeline works when prompt indices are within num_frames bounds
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf"}
|
||||
inputs["num_frames"] = 16
|
||||
pipe(**inputs).frames[0]
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
# Ensure that prompt indices are within bounds
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["num_frames"] = 16
|
||||
inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf", 42: "Error on a leaf"}
|
||||
pipe(**inputs).frames[0]
|
||||
|
||||
@unittest.skipIf(
|
||||
torch_device != "cuda" or not is_xformers_available(),
|
||||
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
||||
|
||||
@@ -476,6 +476,27 @@ class AnimateDiffControlNetPipelineFastTests(
|
||||
"Disabling of FreeNoise should lead to results similar to the default pipeline results",
|
||||
)
|
||||
|
||||
def test_free_noise_multi_prompt(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
context_length = 8
|
||||
context_stride = 4
|
||||
pipe.enable_free_noise(context_length, context_stride)
|
||||
|
||||
# Make sure that pipeline works when prompt indices are within num_frames bounds
|
||||
inputs = self.get_dummy_inputs(torch_device, num_frames=16)
|
||||
inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf"}
|
||||
pipe(**inputs).frames[0]
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
# Ensure that prompt indices are within bounds
|
||||
inputs = self.get_dummy_inputs(torch_device, num_frames=16)
|
||||
inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf", 42: "Error on a leaf"}
|
||||
pipe(**inputs).frames[0]
|
||||
|
||||
def test_vae_slicing(self, video_count=2):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
|
||||
@@ -491,3 +491,28 @@ class AnimateDiffVideoToVideoPipelineFastTests(
|
||||
1e-4,
|
||||
"Disabling of FreeNoise should lead to results similar to the default pipeline results",
|
||||
)
|
||||
|
||||
def test_free_noise_multi_prompt(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe: AnimateDiffVideoToVideoPipeline = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
context_length = 8
|
||||
context_stride = 4
|
||||
pipe.enable_free_noise(context_length, context_stride)
|
||||
|
||||
# Make sure that pipeline works when prompt indices are within num_frames bounds
|
||||
inputs = self.get_dummy_inputs(torch_device, num_frames=16)
|
||||
inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf"}
|
||||
inputs["num_inference_steps"] = 2
|
||||
inputs["strength"] = 0.5
|
||||
pipe(**inputs).frames[0]
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
# Ensure that prompt indices are within bounds
|
||||
inputs = self.get_dummy_inputs(torch_device, num_frames=16)
|
||||
inputs["num_inference_steps"] = 2
|
||||
inputs["strength"] = 0.5
|
||||
inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf", 42: "Error on a leaf"}
|
||||
pipe(**inputs).frames[0]
|
||||
|
||||
328
tests/pipelines/cogvideox/test_cogvideox_video2video.py
Normal file
328
tests/pipelines/cogvideox/test_cogvideox_video2video.py
Normal file
@@ -0,0 +1,328 @@
|
||||
# Copyright 2024 The HuggingFace Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXVideoToVideoPipeline, DDIMScheduler
|
||||
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import (
|
||||
PipelineTesterMixin,
|
||||
check_qkv_fusion_matches_attn_procs_length,
|
||||
check_qkv_fusion_processors_exist,
|
||||
to_np,
|
||||
)
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = CogVideoXVideoToVideoPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"video"})
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = CogVideoXTransformer3DModel(
|
||||
# Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings
|
||||
# But, since we are using tiny-random-t5 here, we need the internal dim of CogVideoXTransformer3DModel
|
||||
# to be 32. The internal dim is product of num_attention_heads and attention_head_dim
|
||||
num_attention_heads=4,
|
||||
attention_head_dim=8,
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
time_embed_dim=2,
|
||||
text_embed_dim=32, # Must match with tiny-random-t5
|
||||
num_layers=1,
|
||||
sample_width=16, # latent width: 2 -> final width: 16
|
||||
sample_height=16, # latent height: 2 -> final height: 16
|
||||
sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9
|
||||
patch_size=2,
|
||||
temporal_compression_ratio=4,
|
||||
max_text_seq_length=16,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKLCogVideoX(
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=(
|
||||
"CogVideoXDownBlock3D",
|
||||
"CogVideoXDownBlock3D",
|
||||
"CogVideoXDownBlock3D",
|
||||
"CogVideoXDownBlock3D",
|
||||
),
|
||||
up_block_types=(
|
||||
"CogVideoXUpBlock3D",
|
||||
"CogVideoXUpBlock3D",
|
||||
"CogVideoXUpBlock3D",
|
||||
"CogVideoXUpBlock3D",
|
||||
),
|
||||
block_out_channels=(8, 8, 8, 8),
|
||||
latent_channels=4,
|
||||
layers_per_block=1,
|
||||
norm_num_groups=2,
|
||||
temporal_compression_ratio=4,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed: int = 0, num_frames: int = 8):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
|
||||
video_height = 16
|
||||
video_width = 16
|
||||
video = [Image.new("RGB", (video_width, video_height))] * num_frames
|
||||
|
||||
inputs = {
|
||||
"video": video,
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"strength": 0.5,
|
||||
"guidance_scale": 6.0,
|
||||
# Cannot reduce because convolution kernel becomes bigger than sample
|
||||
"height": video_height,
|
||||
"width": video_width,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
video = pipe(**inputs).frames
|
||||
generated_video = video[0]
|
||||
|
||||
self.assertEqual(generated_video.shape, (8, 3, 16, 16))
|
||||
expected_video = torch.randn(8, 3, 16, 16)
|
||||
max_diff = np.abs(generated_video - expected_video).max()
|
||||
self.assertLessEqual(max_diff, 1e10)
|
||||
|
||||
def test_callback_inputs(self):
|
||||
sig = inspect.signature(self.pipeline_class.__call__)
|
||||
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
|
||||
has_callback_step_end = "callback_on_step_end" in sig.parameters
|
||||
|
||||
if not (has_callback_tensor_inputs and has_callback_step_end):
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
self.assertTrue(
|
||||
hasattr(pipe, "_callback_tensor_inputs"),
|
||||
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
|
||||
)
|
||||
|
||||
def callback_inputs_subset(pipe, i, t, callback_kwargs):
|
||||
# iterate over callback args
|
||||
for tensor_name, tensor_value in callback_kwargs.items():
|
||||
# check that we're only passing in allowed tensor inputs
|
||||
assert tensor_name in pipe._callback_tensor_inputs
|
||||
|
||||
return callback_kwargs
|
||||
|
||||
def callback_inputs_all(pipe, i, t, callback_kwargs):
|
||||
for tensor_name in pipe._callback_tensor_inputs:
|
||||
assert tensor_name in callback_kwargs
|
||||
|
||||
# iterate over callback args
|
||||
for tensor_name, tensor_value in callback_kwargs.items():
|
||||
# check that we're only passing in allowed tensor inputs
|
||||
assert tensor_name in pipe._callback_tensor_inputs
|
||||
|
||||
return callback_kwargs
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
# Test passing in a subset
|
||||
inputs["callback_on_step_end"] = callback_inputs_subset
|
||||
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
# Test passing in a everything
|
||||
inputs["callback_on_step_end"] = callback_inputs_all
|
||||
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
|
||||
is_last = i == (pipe.num_timesteps - 1)
|
||||
if is_last:
|
||||
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
|
||||
return callback_kwargs
|
||||
|
||||
inputs["callback_on_step_end"] = callback_inputs_change_tensor
|
||||
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
||||
output = pipe(**inputs)[0]
|
||||
assert output.abs().sum() < 1e10
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3)
|
||||
|
||||
def test_attention_slicing_forward_pass(
|
||||
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
||||
):
|
||||
if not self.test_attention_slicing:
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_without_slicing = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=1)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing1 = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=2)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing2 = pipe(**inputs)[0]
|
||||
|
||||
if test_max_difference:
|
||||
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
||||
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
||||
self.assertLess(
|
||||
max(max_diff1, max_diff2),
|
||||
expected_max_diff,
|
||||
"Attention slicing should not affect the inference results",
|
||||
)
|
||||
|
||||
def test_vae_tiling(self, expected_diff_max: float = 0.2):
|
||||
# Since VideoToVideo uses both encoder and decoder tiling, there seems to be much more numerical
|
||||
# difference. We seem to need a higher tolerance here...
|
||||
# TODO(aryan): Look into this more deeply
|
||||
expected_diff_max = 0.4
|
||||
|
||||
generator_device = "cpu"
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to("cpu")
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# Without tiling
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
output_without_tiling = pipe(**inputs)[0]
|
||||
|
||||
# With tiling
|
||||
pipe.vae.enable_tiling(
|
||||
tile_sample_min_height=96,
|
||||
tile_sample_min_width=96,
|
||||
tile_overlap_factor_height=1 / 12,
|
||||
tile_overlap_factor_width=1 / 12,
|
||||
)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
output_with_tiling = pipe(**inputs)[0]
|
||||
|
||||
self.assertLess(
|
||||
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
||||
expected_diff_max,
|
||||
"VAE tiling should not affect the inference results",
|
||||
)
|
||||
|
||||
@unittest.skip("xformers attention processor does not exist for CogVideoX")
|
||||
def test_xformers_attention_forwardGenerator_pass(self):
|
||||
pass
|
||||
|
||||
def test_fused_qkv_projections(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
frames = pipe(**inputs).frames # [B, F, C, H, W]
|
||||
original_image_slice = frames[0, -2:, -1, -3:, -3:]
|
||||
|
||||
pipe.fuse_qkv_projections()
|
||||
assert check_qkv_fusion_processors_exist(
|
||||
pipe.transformer
|
||||
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
|
||||
assert check_qkv_fusion_matches_attn_procs_length(
|
||||
pipe.transformer, pipe.transformer.original_attn_processors
|
||||
), "Something wrong with the attention processors concerning the fused QKV projections."
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
frames = pipe(**inputs).frames
|
||||
image_slice_fused = frames[0, -2:, -1, -3:, -3:]
|
||||
|
||||
pipe.transformer.unfuse_qkv_projections()
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
frames = pipe(**inputs).frames
|
||||
image_slice_disabled = frames[0, -2:, -1, -3:, -3:]
|
||||
|
||||
assert np.allclose(
|
||||
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3
|
||||
), "Fusion of QKV projections shouldn't affect the outputs."
|
||||
assert np.allclose(
|
||||
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3
|
||||
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
|
||||
assert np.allclose(
|
||||
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
|
||||
), "Original outputs should match when fused QKV projections are disabled."
|
||||
@@ -25,6 +25,9 @@ class FluxPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
|
||||
# there is no xformers processor for Flux
|
||||
test_xformers_attention = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = FluxTransformer2DModel(
|
||||
|
||||
@@ -37,6 +37,7 @@ class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixi
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt"])
|
||||
test_xformers_attention = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -68,6 +68,8 @@ class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
"callback_steps",
|
||||
]
|
||||
)
|
||||
# There is not xformers version of the StableAudioPipeline custom attention processor
|
||||
test_xformers_attention = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
|
||||
Reference in New Issue
Block a user