mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
update
This commit is contained in:
0
tests/modular/__init__.py
Normal file
0
tests/modular/__init__.py
Normal file
359
tests/modular/test_modular_pipelines_common.py
Normal file
359
tests/modular/test_modular_pipelines_common.py
Normal file
@@ -0,0 +1,359 @@
|
||||
import gc
|
||||
import unittest
|
||||
from typing import Callable, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import diffusers
|
||||
from diffusers import (
|
||||
DiffusionPipeline,
|
||||
)
|
||||
from diffusers.utils import logging
|
||||
from diffusers.utils.testing_utils import (
|
||||
backend_empty_cache,
|
||||
numpy_cosine_similarity_distance,
|
||||
require_accelerator,
|
||||
require_torch,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
def to_np(tensor):
|
||||
if isinstance(tensor, torch.Tensor):
|
||||
tensor = tensor.detach().cpu().numpy()
|
||||
|
||||
return tensor
|
||||
|
||||
|
||||
@require_torch
|
||||
class ModularPipelineTesterMixin:
|
||||
"""
|
||||
This mixin is designed to be used with unittest.TestCase classes.
|
||||
It provides a set of common tests for each modular pipeline,
|
||||
including:
|
||||
- test_pipeline_call_signature: check if the pipeline's __call__ method has all required parameters
|
||||
- test_inference_batch_consistent: check if the pipeline's __call__ method can handle batch inputs
|
||||
- test_inference_batch_single_identical: check if the pipeline's __call__ method can handle single input
|
||||
- test_float16_inference: check if the pipeline's __call__ method can handle float16 inputs
|
||||
- test_to_device: check if the pipeline's __call__ method can handle different devices
|
||||
"""
|
||||
|
||||
# Canonical parameters that are passed to `__call__` regardless
|
||||
# of the type of pipeline. They are always optional and have common
|
||||
# sense default values.
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"num_images_per_prompt",
|
||||
"latents",
|
||||
"output_type",
|
||||
]
|
||||
)
|
||||
# this is modular specific: generator needs to be a intermediate input because it's mutable
|
||||
required_intermediate_params = frozenset(
|
||||
[
|
||||
"generator",
|
||||
]
|
||||
)
|
||||
|
||||
def get_generator(self, seed):
|
||||
device = torch_device if torch_device != "mps" else "cpu"
|
||||
generator = torch.Generator(device).manual_seed(seed)
|
||||
return generator
|
||||
|
||||
@property
|
||||
def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
|
||||
raise NotImplementedError(
|
||||
"You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
@property
|
||||
def repo(self) -> str:
|
||||
raise NotImplementedError(
|
||||
"You need to set the attribute `repo` in the child test class. See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
@property
|
||||
def pipeline_blocks_class(self) -> Union[Callable, DiffusionPipeline]:
|
||||
raise NotImplementedError(
|
||||
"You need to set the attribute `pipeline_blocks_class = ClassNameOfPipelineBlocks` in the child test class. "
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
def get_pipeline(self):
|
||||
raise NotImplementedError(
|
||||
"You need to implement `get_pipeline(self)` in the child test class. "
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
raise NotImplementedError(
|
||||
"You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
@property
|
||||
def params(self) -> frozenset:
|
||||
raise NotImplementedError(
|
||||
"You need to set the attribute `params` in the child test class. "
|
||||
"`params` are checked for if all values are present in `__call__`'s signature."
|
||||
" You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
|
||||
" e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to "
|
||||
"image pipelines, including prompts and prompt embedding overrides."
|
||||
"If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
|
||||
"do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
|
||||
"with non-configurable height and width arguments should set the attribute as "
|
||||
"`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_params(self) -> frozenset:
|
||||
raise NotImplementedError(
|
||||
"You need to set the attribute `batch_params` in the child test class. "
|
||||
"`batch_params` are the parameters required to be batched when passed to the pipeline's "
|
||||
"`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
|
||||
"`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
|
||||
"set of batch arguments has minor changes from one of the common sets of batch arguments, "
|
||||
"do not make modifications to the existing common sets of batch arguments. I.e. a text to "
|
||||
"image pipeline `negative_prompt` is not batched should set the attribute as "
|
||||
"`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
def setUp(self):
|
||||
# clean up the VRAM before each test
|
||||
super().setUp()
|
||||
torch.compiler.reset()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test in case of CUDA runtime errors
|
||||
super().tearDown()
|
||||
torch.compiler.reset()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def test_pipeline_call_signature(self):
|
||||
pipe = self.get_pipeline()
|
||||
parameters = pipe.blocks.input_names
|
||||
optional_parameters = pipe.default_call_parameters
|
||||
intermediate_parameters = pipe.blocks.intermediate_input_names
|
||||
|
||||
remaining_required_parameters = set()
|
||||
|
||||
for param in self.params:
|
||||
if param not in parameters:
|
||||
remaining_required_parameters.add(param)
|
||||
|
||||
self.assertTrue(
|
||||
len(remaining_required_parameters) == 0,
|
||||
f"Required parameters not present: {remaining_required_parameters}",
|
||||
)
|
||||
|
||||
remaining_required_intermediate_parameters = set()
|
||||
|
||||
for param in self.required_intermediate_params:
|
||||
if param not in intermediate_parameters:
|
||||
remaining_required_intermediate_parameters.add(param)
|
||||
|
||||
self.assertTrue(
|
||||
len(remaining_required_intermediate_parameters) == 0,
|
||||
f"Required intermediate parameters not present: {remaining_required_intermediate_parameters}",
|
||||
)
|
||||
|
||||
remaining_required_optional_parameters = set()
|
||||
|
||||
for param in self.required_optional_params:
|
||||
if param not in optional_parameters:
|
||||
remaining_required_optional_parameters.add(param)
|
||||
|
||||
self.assertTrue(
|
||||
len(remaining_required_optional_parameters) == 0,
|
||||
f"Required optional parameters not present: {remaining_required_optional_parameters}",
|
||||
)
|
||||
|
||||
def test_inference_batch_consistent(self, batch_sizes=[2]):
|
||||
self._test_inference_batch_consistent(batch_sizes=batch_sizes)
|
||||
|
||||
def _test_inference_batch_consistent(
|
||||
self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
|
||||
):
|
||||
pipe = self.get_pipeline()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
|
||||
logger = logging.get_logger(pipe.__module__)
|
||||
logger.setLevel(level=diffusers.logging.FATAL)
|
||||
|
||||
# prepare batched inputs
|
||||
batched_inputs = []
|
||||
for batch_size in batch_sizes:
|
||||
batched_input = {}
|
||||
batched_input.update(inputs)
|
||||
|
||||
for name in self.batch_params:
|
||||
if name not in inputs:
|
||||
continue
|
||||
|
||||
value = inputs[name]
|
||||
if name == "prompt":
|
||||
len_prompt = len(value)
|
||||
# make unequal batch sizes
|
||||
batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
|
||||
|
||||
# make last batch super long
|
||||
batched_input[name][-1] = 100 * "very long"
|
||||
|
||||
else:
|
||||
batched_input[name] = batch_size * [value]
|
||||
|
||||
if batch_generator and "generator" in inputs:
|
||||
batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
|
||||
|
||||
if "batch_size" in inputs:
|
||||
batched_input["batch_size"] = batch_size
|
||||
|
||||
batched_inputs.append(batched_input)
|
||||
|
||||
logger.setLevel(level=diffusers.logging.WARNING)
|
||||
for batch_size, batched_input in zip(batch_sizes, batched_inputs):
|
||||
output = pipe(**batched_input, output="images")
|
||||
assert len(output) == batch_size
|
||||
|
||||
def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
|
||||
self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
|
||||
|
||||
def _test_inference_batch_single_identical(
|
||||
self,
|
||||
batch_size=2,
|
||||
expected_max_diff=1e-4,
|
||||
additional_params_copy_to_batched_inputs=["num_inference_steps"],
|
||||
):
|
||||
pipe = self.get_pipeline()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
# Reset generator in case it is has been used in self.get_dummy_inputs
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
|
||||
logger = logging.get_logger(pipe.__module__)
|
||||
logger.setLevel(level=diffusers.logging.FATAL)
|
||||
|
||||
# batchify inputs
|
||||
batched_inputs = {}
|
||||
batched_inputs.update(inputs)
|
||||
|
||||
for name in self.batch_params:
|
||||
if name not in inputs:
|
||||
continue
|
||||
|
||||
value = inputs[name]
|
||||
if name == "prompt":
|
||||
len_prompt = len(value)
|
||||
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
|
||||
batched_inputs[name][-1] = 100 * "very long"
|
||||
|
||||
else:
|
||||
batched_inputs[name] = batch_size * [value]
|
||||
|
||||
if "generator" in inputs:
|
||||
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
|
||||
|
||||
if "batch_size" in inputs:
|
||||
batched_inputs["batch_size"] = batch_size
|
||||
|
||||
for arg in additional_params_copy_to_batched_inputs:
|
||||
batched_inputs[arg] = inputs[arg]
|
||||
|
||||
output = pipe(**inputs, output="images")
|
||||
output_batch = pipe(**batched_inputs, output="images")
|
||||
|
||||
assert output_batch.shape[0] == batch_size
|
||||
|
||||
max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max()
|
||||
assert max_diff < expected_max_diff
|
||||
|
||||
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
|
||||
@require_accelerator
|
||||
def test_float16_inference(self, expected_max_diff=5e-2):
|
||||
pipe = self.get_pipeline(torch_dtype=torch.float32)
|
||||
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
pipe_fp16 = self.get_pipeline(torch_dtype=torch.float16)
|
||||
pipe_fp16.to(torch_device, torch.float16)
|
||||
pipe_fp16.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
# Reset generator in case it is used inside dummy inputs
|
||||
if "generator" in inputs:
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
output = pipe(**inputs, output="images")
|
||||
|
||||
fp16_inputs = self.get_dummy_inputs(torch_device)
|
||||
# Reset generator in case it is used inside dummy inputs
|
||||
if "generator" in fp16_inputs:
|
||||
fp16_inputs["generator"] = self.get_generator(0)
|
||||
output_fp16 = pipe_fp16(**fp16_inputs, output="images")
|
||||
|
||||
if isinstance(output, torch.Tensor):
|
||||
output = output.cpu()
|
||||
output_fp16 = output_fp16.cpu()
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(output.flatten(), output_fp16.flatten())
|
||||
assert max_diff < expected_max_diff
|
||||
|
||||
@require_accelerator
|
||||
def test_to_device(self):
|
||||
pipe = self.get_pipeline()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
pipe.to("cpu")
|
||||
model_devices = [
|
||||
component.device.type for component in pipe.components.values() if hasattr(component, "device")
|
||||
]
|
||||
self.assertTrue(all(device == "cpu" for device in model_devices))
|
||||
|
||||
output_cpu = pipe(**self.get_dummy_inputs("cpu"), output="images")
|
||||
self.assertTrue(np.isnan(output_cpu).sum() == 0)
|
||||
|
||||
pipe.to(torch_device)
|
||||
model_devices = [
|
||||
component.device.type for component in pipe.components.values() if hasattr(component, "device")
|
||||
]
|
||||
self.assertTrue(all(device == torch_device for device in model_devices))
|
||||
|
||||
output_device = pipe(**self.get_dummy_inputs(torch_device), output="images")
|
||||
self.assertTrue(np.isnan(to_np(output_device)).sum() == 0)
|
||||
|
||||
def test_num_images_per_prompt(self):
|
||||
pipe = self.get_pipeline()
|
||||
|
||||
if "num_images_per_prompt" not in pipe.blocks.input_names:
|
||||
return
|
||||
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
batch_sizes = [1, 2]
|
||||
num_images_per_prompts = [1, 2]
|
||||
|
||||
for batch_size in batch_sizes:
|
||||
for num_images_per_prompt in num_images_per_prompts:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
for key in inputs.keys():
|
||||
if key in self.batch_params:
|
||||
inputs[key] = batch_size * [inputs[key]]
|
||||
|
||||
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt, output="images")
|
||||
|
||||
assert images.shape[0] == batch_size * num_images_per_prompt
|
||||
Reference in New Issue
Block a user