mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add custom vae (diffusers type) to onnx converter (#2325)
This commit is contained in:
126
scripts/convert_vae_diff_to_onnx.py
Normal file
126
scripts/convert_vae_diff_to_onnx.py
Normal file
@@ -0,0 +1,126 @@
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from torch.onnx import export
|
||||
|
||||
import onnx
|
||||
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline, AutoencoderKL
|
||||
from packaging import version
|
||||
|
||||
|
||||
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
|
||||
|
||||
|
||||
def onnx_export(
|
||||
model,
|
||||
model_args: tuple,
|
||||
output_path: Path,
|
||||
ordered_input_names,
|
||||
output_names,
|
||||
dynamic_axes,
|
||||
opset,
|
||||
use_external_data_format=False,
|
||||
):
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
|
||||
# so we check the torch version for backwards compatibility
|
||||
if is_torch_less_than_1_11:
|
||||
export(
|
||||
model,
|
||||
model_args,
|
||||
f=output_path.as_posix(),
|
||||
input_names=ordered_input_names,
|
||||
output_names=output_names,
|
||||
dynamic_axes=dynamic_axes,
|
||||
do_constant_folding=True,
|
||||
use_external_data_format=use_external_data_format,
|
||||
enable_onnx_checker=True,
|
||||
opset_version=opset,
|
||||
)
|
||||
else:
|
||||
export(
|
||||
model,
|
||||
model_args,
|
||||
f=output_path.as_posix(),
|
||||
input_names=ordered_input_names,
|
||||
output_names=output_names,
|
||||
dynamic_axes=dynamic_axes,
|
||||
do_constant_folding=True,
|
||||
opset_version=opset,
|
||||
)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False):
|
||||
dtype = torch.float16 if fp16 else torch.float32
|
||||
if fp16 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif fp16 and not torch.cuda.is_available():
|
||||
raise ValueError("`float16` model export is only supported on GPUs with CUDA")
|
||||
else:
|
||||
device = "cpu"
|
||||
output_path = Path(output_path)
|
||||
|
||||
# VAE DECODER
|
||||
vae_decoder = AutoencoderKL.from_pretrained(model_path + "/vae")
|
||||
vae_latent_channels = vae_decoder.config.latent_channels
|
||||
vae_out_channels = vae_decoder.config.out_channels
|
||||
# forward only through the decoder part
|
||||
vae_decoder.forward = vae_decoder.decode
|
||||
onnx_export(
|
||||
vae_decoder,
|
||||
model_args=(
|
||||
torch.randn(1, vae_latent_channels, 25, 25).to(device=device, dtype=dtype),
|
||||
False,
|
||||
),
|
||||
output_path=output_path / "vae_decoder" / "model.onnx",
|
||||
ordered_input_names=["latent_sample", "return_dict"],
|
||||
output_names=["sample"],
|
||||
dynamic_axes={
|
||||
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
|
||||
},
|
||||
opset=opset,
|
||||
)
|
||||
del vae_decoder
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
|
||||
)
|
||||
|
||||
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
|
||||
parser.add_argument(
|
||||
"--opset",
|
||||
default=14,
|
||||
type=int,
|
||||
help="The version of the ONNX operator set to use.",
|
||||
)
|
||||
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args.output_path)
|
||||
convert_models(args.model_path, args.output_path, args.opset, args.fp16)
|
||||
print("SD: Done: ONNX")
|
||||
Reference in New Issue
Block a user