mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Support ControlNet for Qwen-Image (#12215)
* support qwen-image-cn-union --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: YiYi Xu <yixu310@gmail.com>
This commit is contained in:
committed by
GitHub
parent
b60faf456b
commit
561ab54de3
@@ -120,6 +120,10 @@ The `guidance_scale` parameter in the pipeline is there to support future guidan
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## QwenImaggeControlNetPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## QwenImagePipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput
|
||||
@@ -218,6 +218,8 @@ else:
|
||||
"OmniGenTransformer2DModel",
|
||||
"PixArtTransformer2DModel",
|
||||
"PriorTransformer",
|
||||
"QwenImageControlNetModel",
|
||||
"QwenImageMultiControlNetModel",
|
||||
"QwenImageTransformer2DModel",
|
||||
"SanaControlNetModel",
|
||||
"SanaTransformer2DModel",
|
||||
@@ -491,6 +493,7 @@ else:
|
||||
"PixArtAlphaPipeline",
|
||||
"PixArtSigmaPAGPipeline",
|
||||
"PixArtSigmaPipeline",
|
||||
"QwenImageControlNetPipeline",
|
||||
"QwenImageEditPipeline",
|
||||
"QwenImageImg2ImgPipeline",
|
||||
"QwenImageInpaintPipeline",
|
||||
@@ -885,6 +888,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
OmniGenTransformer2DModel,
|
||||
PixArtTransformer2DModel,
|
||||
PriorTransformer,
|
||||
QwenImageControlNetModel,
|
||||
QwenImageMultiControlNetModel,
|
||||
QwenImageTransformer2DModel,
|
||||
SanaControlNetModel,
|
||||
SanaTransformer2DModel,
|
||||
@@ -1128,6 +1133,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
PixArtAlphaPipeline,
|
||||
PixArtSigmaPAGPipeline,
|
||||
PixArtSigmaPipeline,
|
||||
QwenImageControlNetPipeline,
|
||||
QwenImageEditPipeline,
|
||||
QwenImageImg2ImgPipeline,
|
||||
QwenImageInpaintPipeline,
|
||||
|
||||
@@ -52,6 +52,10 @@ if is_torch_available():
|
||||
"HunyuanDiT2DControlNetModel",
|
||||
"HunyuanDiT2DMultiControlNetModel",
|
||||
]
|
||||
_import_structure["controlnets.controlnet_qwenimage"] = [
|
||||
"QwenImageControlNetModel",
|
||||
"QwenImageMultiControlNetModel",
|
||||
]
|
||||
_import_structure["controlnets.controlnet_sana"] = ["SanaControlNetModel"]
|
||||
_import_structure["controlnets.controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
|
||||
_import_structure["controlnets.controlnet_sparsectrl"] = ["SparseControlNetModel"]
|
||||
@@ -148,6 +152,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
HunyuanDiT2DMultiControlNetModel,
|
||||
MultiControlNetModel,
|
||||
MultiControlNetUnionModel,
|
||||
QwenImageControlNetModel,
|
||||
QwenImageMultiControlNetModel,
|
||||
SanaControlNetModel,
|
||||
SD3ControlNetModel,
|
||||
SD3MultiControlNetModel,
|
||||
|
||||
@@ -9,6 +9,7 @@ if is_torch_available():
|
||||
HunyuanDiT2DControlNetModel,
|
||||
HunyuanDiT2DMultiControlNetModel,
|
||||
)
|
||||
from .controlnet_qwenimage import QwenImageControlNetModel, QwenImageMultiControlNetModel
|
||||
from .controlnet_sana import SanaControlNetModel
|
||||
from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel
|
||||
from .controlnet_sparsectrl import (
|
||||
|
||||
359
src/diffusers/models/controlnets/controlnet_qwenimage.py
Normal file
359
src/diffusers/models/controlnets/controlnet_qwenimage.py
Normal file
@@ -0,0 +1,359 @@
|
||||
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ..attention_processor import AttentionProcessor
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..controlnets.controlnet import zero_module
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..transformers.transformer_qwenimage import (
|
||||
QwenEmbedRope,
|
||||
QwenImageTransformerBlock,
|
||||
QwenTimestepProjEmbeddings,
|
||||
RMSNorm,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
class QwenImageControlNetOutput(BaseOutput):
|
||||
controlnet_block_samples: Tuple[torch.Tensor]
|
||||
|
||||
|
||||
class QwenImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = 16,
|
||||
num_layers: int = 60,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 3584,
|
||||
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
||||
extra_condition_channels: int = 0, # for controlnet-inpainting
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
||||
|
||||
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
||||
|
||||
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
||||
|
||||
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
||||
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
QwenImageTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# controlnet_blocks
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(len(self.transformer_blocks)):
|
||||
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
||||
self.controlnet_x_embedder = zero_module(
|
||||
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self):
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
@classmethod
|
||||
def from_transformer(
|
||||
cls,
|
||||
transformer,
|
||||
num_layers: int = 5,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
load_weights_from_transformer=True,
|
||||
extra_condition_channels: int = 0,
|
||||
):
|
||||
config = dict(transformer.config)
|
||||
config["num_layers"] = num_layers
|
||||
config["attention_head_dim"] = attention_head_dim
|
||||
config["num_attention_heads"] = num_attention_heads
|
||||
config["extra_condition_channels"] = extra_condition_channels
|
||||
|
||||
controlnet = cls.from_config(config)
|
||||
|
||||
if load_weights_from_transformer:
|
||||
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
||||
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
||||
controlnet.img_in.load_state_dict(transformer.img_in.state_dict())
|
||||
controlnet.txt_in.load_state_dict(transformer.txt_in.state_dict())
|
||||
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
||||
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
||||
|
||||
return controlnet
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
controlnet_cond: torch.Tensor,
|
||||
conditioning_scale: float = 1.0,
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
encoder_hidden_states_mask: torch.Tensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
||||
txt_seq_lens: Optional[List[int]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`FluxTransformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
||||
Input `hidden_states`.
|
||||
controlnet_cond (`torch.Tensor`):
|
||||
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
conditioning_scale (`float`, defaults to `1.0`):
|
||||
The scale factor for ControlNet outputs.
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
||||
from the embeddings of input conditions.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
||||
A list of tensors that if specified are added to the residuals of transformer blocks.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
hidden_states = self.img_in(hidden_states)
|
||||
|
||||
# add
|
||||
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
||||
|
||||
temb = self.time_text_embed(timestep, hidden_states)
|
||||
|
||||
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
|
||||
|
||||
timestep = timestep.to(hidden_states.dtype)
|
||||
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
||||
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
||||
|
||||
block_samples = ()
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
encoder_hidden_states_mask,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
block_samples = block_samples + (hidden_states,)
|
||||
|
||||
# controlnet block
|
||||
controlnet_block_samples = ()
|
||||
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
||||
block_sample = controlnet_block(block_sample)
|
||||
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
||||
|
||||
# scaling
|
||||
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
||||
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return controlnet_block_samples
|
||||
|
||||
return QwenImageControlNetOutput(
|
||||
controlnet_block_samples=controlnet_block_samples,
|
||||
)
|
||||
|
||||
|
||||
class QwenImageMultiControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
||||
r"""
|
||||
`QwenImageMultiControlNetModel` wrapper class for Multi-QwenImageControlNetModel
|
||||
|
||||
This module is a wrapper for multiple instances of the `QwenImageControlNetModel`. The `forward()` API is designed
|
||||
to be compatible with `QwenImageControlNetModel`.
|
||||
|
||||
Args:
|
||||
controlnets (`List[QwenImageControlNetModel]`):
|
||||
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
||||
`QwenImageControlNetModel` as a list.
|
||||
"""
|
||||
|
||||
def __init__(self, controlnets):
|
||||
super().__init__()
|
||||
self.nets = nn.ModuleList(controlnets)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
controlnet_cond: List[torch.tensor],
|
||||
conditioning_scale: List[float],
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
encoder_hidden_states_mask: torch.Tensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
||||
txt_seq_lens: Optional[List[int]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[QwenImageControlNetOutput, Tuple]:
|
||||
# ControlNet-Union with multiple conditions
|
||||
# only load one ControlNet for saving memories
|
||||
if len(self.nets) == 1:
|
||||
controlnet = self.nets[0]
|
||||
|
||||
for i, (image, scale) in enumerate(zip(controlnet_cond, conditioning_scale)):
|
||||
block_samples = controlnet(
|
||||
hidden_states=hidden_states,
|
||||
controlnet_cond=image,
|
||||
conditioning_scale=scale,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
timestep=timestep,
|
||||
img_shapes=img_shapes,
|
||||
txt_seq_lens=txt_seq_lens,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
# merge samples
|
||||
if i == 0:
|
||||
control_block_samples = block_samples
|
||||
else:
|
||||
if block_samples is not None and control_block_samples is not None:
|
||||
control_block_samples = [
|
||||
control_block_sample + block_sample
|
||||
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
||||
]
|
||||
else:
|
||||
raise ValueError("QwenImageMultiControlNetModel only supports a single controlnet-union now.")
|
||||
|
||||
return control_block_samples
|
||||
@@ -16,6 +16,7 @@ import functools
|
||||
import math
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
@@ -552,6 +553,7 @@ class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Fro
|
||||
txt_seq_lens: Optional[List[int]] = None,
|
||||
guidance: torch.Tensor = None, # TODO: this should probably be removed
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
controlnet_block_samples=None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
@@ -631,6 +633,12 @@ class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Fro
|
||||
joint_attention_kwargs=attention_kwargs,
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if controlnet_block_samples is not None:
|
||||
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
||||
interval_control = int(np.ceil(interval_control))
|
||||
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
||||
|
||||
# Use only the image part (hidden_states) from the dual-stream blocks
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
output = self.proj_out(hidden_states)
|
||||
|
||||
@@ -209,7 +209,7 @@ class ComponentSpec:
|
||||
|
||||
# Get all loading fields in order
|
||||
loading_fields = cls.loading_fields()
|
||||
result = {f: None for f in loading_fields}
|
||||
result = dict.fromkeys(loading_fields)
|
||||
|
||||
if load_id == "null":
|
||||
return result
|
||||
|
||||
@@ -393,6 +393,7 @@ else:
|
||||
"QwenImageImg2ImgPipeline",
|
||||
"QwenImageInpaintPipeline",
|
||||
"QwenImageEditPipeline",
|
||||
"QwenImageControlNetPipeline",
|
||||
]
|
||||
try:
|
||||
if not is_onnx_available():
|
||||
@@ -712,6 +713,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .pia import PIAPipeline
|
||||
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
|
||||
from .qwenimage import (
|
||||
QwenImageControlNetPipeline,
|
||||
QwenImageEditPipeline,
|
||||
QwenImageImg2ImgPipeline,
|
||||
QwenImageInpaintPipeline,
|
||||
|
||||
@@ -24,6 +24,7 @@ except OptionalDependencyNotAvailable:
|
||||
else:
|
||||
_import_structure["modeling_qwenimage"] = ["ReduxImageEncoder"]
|
||||
_import_structure["pipeline_qwenimage"] = ["QwenImagePipeline"]
|
||||
_import_structure["pipeline_qwenimage_controlnet"] = ["QwenImageControlNetPipeline"]
|
||||
_import_structure["pipeline_qwenimage_edit"] = ["QwenImageEditPipeline"]
|
||||
_import_structure["pipeline_qwenimage_img2img"] = ["QwenImageImg2ImgPipeline"]
|
||||
_import_structure["pipeline_qwenimage_inpaint"] = ["QwenImageInpaintPipeline"]
|
||||
@@ -36,6 +37,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .pipeline_qwenimage import QwenImagePipeline
|
||||
from .pipeline_qwenimage_controlnet import QwenImageControlNetPipeline
|
||||
from .pipeline_qwenimage_edit import QwenImageEditPipeline
|
||||
from .pipeline_qwenimage_img2img import QwenImageImg2ImgPipeline
|
||||
from .pipeline_qwenimage_inpaint import QwenImageInpaintPipeline
|
||||
|
||||
@@ -0,0 +1,948 @@
|
||||
# Copyright 2025 Qwen-Image Team, InstantX Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import QwenImageLoraLoaderMixin
|
||||
from ...models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
|
||||
from ...models.controlnets.controlnet_qwenimage import QwenImageControlNetModel, QwenImageMultiControlNetModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .pipeline_output import QwenImagePipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers.utils import load_image
|
||||
>>> from diffusers import QwenImageControlNetModel, QwenImageMultiControlNetModel, QwenImageControlNetPipeline
|
||||
|
||||
>>> # QwenImageControlNetModel
|
||||
>>> controlnet = QwenImageControlNetModel.from_pretrained(
|
||||
... "InstantX/Qwen-Image-ControlNet-Union", torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe = QwenImageControlNetPipeline.from_pretrained(
|
||||
... "Qwen/Qwen-Image", controlnet=controlnet, torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe.to("cuda")
|
||||
>>> prompt = "Aesthetics art, traditional asian pagoda, elaborate golden accents, sky blue and white color palette, swirling cloud pattern, digital illustration, east asian architecture, ornamental rooftop, intricate detailing on building, cultural representation."
|
||||
>>> negative_prompt = " "
|
||||
>>> control_image = load_image(
|
||||
... "https://huggingface.co/InstantX/Qwen-Image-ControlNet-Union/resolve/main/conds/canny.png"
|
||||
... )
|
||||
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
||||
>>> # Refer to the pipeline documentation for more details.
|
||||
>>> image = pipe(
|
||||
... prompt,
|
||||
... negative_prompt=negative_prompt,
|
||||
... control_image=control_image,
|
||||
... controlnet_conditioning_scale=1.0,
|
||||
... num_inference_steps=30,
|
||||
... true_cfg_scale=4.0,
|
||||
... ).images[0]
|
||||
>>> image.save("qwenimage_cn_union.png")
|
||||
|
||||
>>> # QwenImageMultiControlNetModel
|
||||
>>> controlnet = QwenImageControlNetModel.from_pretrained(
|
||||
... "InstantX/Qwen-Image-ControlNet-Union", torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> controlnet = QwenImageMultiControlNetModel([controlnet])
|
||||
>>> pipe = QwenImageControlNetPipeline.from_pretrained(
|
||||
... "Qwen/Qwen-Image", controlnet=controlnet, torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe.to("cuda")
|
||||
>>> prompt = "Aesthetics art, traditional asian pagoda, elaborate golden accents, sky blue and white color palette, swirling cloud pattern, digital illustration, east asian architecture, ornamental rooftop, intricate detailing on building, cultural representation."
|
||||
>>> negative_prompt = " "
|
||||
>>> control_image = load_image(
|
||||
... "https://huggingface.co/InstantX/Qwen-Image-ControlNet-Union/resolve/main/conds/canny.png"
|
||||
... )
|
||||
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
||||
>>> # Refer to the pipeline documentation for more details.
|
||||
>>> image = pipe(
|
||||
... prompt,
|
||||
... negative_prompt=negative_prompt,
|
||||
... control_image=[control_image, control_image],
|
||||
... controlnet_conditioning_scale=[0.5, 0.5],
|
||||
... num_inference_steps=30,
|
||||
... true_cfg_scale=4.0,
|
||||
... ).images[0]
|
||||
>>> image.save("qwenimage_cn_union_multi.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Coped from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
||||
def retrieve_latents(
|
||||
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
||||
):
|
||||
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
||||
return encoder_output.latent_dist.sample(generator)
|
||||
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
||||
return encoder_output.latent_dist.mode()
|
||||
elif hasattr(encoder_output, "latents"):
|
||||
return encoder_output.latents
|
||||
else:
|
||||
raise AttributeError("Could not access latents of provided encoder_output")
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class QwenImageControlNetPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
||||
r"""
|
||||
The QwenImage pipeline for text-to-image generation.
|
||||
|
||||
Args:
|
||||
transformer ([`QwenImageTransformer2DModel`]):
|
||||
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
||||
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
|
||||
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
|
||||
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
|
||||
tokenizer (`QwenTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKLQwenImage,
|
||||
text_encoder: Qwen2_5_VLForConditionalGeneration,
|
||||
tokenizer: Qwen2Tokenizer,
|
||||
transformer: QwenImageTransformer2DModel,
|
||||
controlnet: Union[QwenImageControlNetModel, QwenImageMultiControlNetModel],
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
controlnet=controlnet,
|
||||
)
|
||||
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
|
||||
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
||||
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
self.tokenizer_max_length = 1024
|
||||
self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
|
||||
self.prompt_template_encode_start_idx = 34
|
||||
self.default_sample_size = 128
|
||||
|
||||
# Coped from diffusers.pipelines.qwenimage.pipeline_qwenimage.extract_masked_hidden
|
||||
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
|
||||
bool_mask = mask.bool()
|
||||
valid_lengths = bool_mask.sum(dim=1)
|
||||
selected = hidden_states[bool_mask]
|
||||
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
|
||||
|
||||
return split_result
|
||||
|
||||
# Coped from diffusers.pipelines.qwenimage.pipeline_qwenimage.get_qwen_prompt_embeds
|
||||
def _get_qwen_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
template = self.prompt_template_encode
|
||||
drop_idx = self.prompt_template_encode_start_idx
|
||||
txt = [template.format(e) for e in prompt]
|
||||
txt_tokens = self.tokenizer(
|
||||
txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
|
||||
).to(self.device)
|
||||
encoder_hidden_states = self.text_encoder(
|
||||
input_ids=txt_tokens.input_ids,
|
||||
attention_mask=txt_tokens.attention_mask,
|
||||
output_hidden_states=True,
|
||||
)
|
||||
hidden_states = encoder_hidden_states.hidden_states[-1]
|
||||
split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
|
||||
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
|
||||
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
|
||||
max_seq_len = max([e.size(0) for e in split_hidden_states])
|
||||
prompt_embeds = torch.stack(
|
||||
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
|
||||
)
|
||||
encoder_attention_mask = torch.stack(
|
||||
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
|
||||
)
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
return prompt_embeds, encoder_attention_mask
|
||||
|
||||
# Coped from diffusers.pipelines.qwenimage.pipeline_qwenimage.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
||||
max_sequence_length: int = 1024,
|
||||
):
|
||||
r"""
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
|
||||
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
|
||||
|
||||
return prompt_embeds, prompt_embeds_mask
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
prompt_embeds_mask=None,
|
||||
negative_prompt_embeds_mask=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
max_sequence_length=None,
|
||||
):
|
||||
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
||||
logger.warning(
|
||||
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
||||
)
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and prompt_embeds_mask is None:
|
||||
raise ValueError(
|
||||
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
|
||||
)
|
||||
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
|
||||
raise ValueError(
|
||||
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
||||
)
|
||||
|
||||
if max_sequence_length is not None and max_sequence_length > 1024:
|
||||
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
|
||||
|
||||
@staticmethod
|
||||
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
|
||||
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
||||
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
||||
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
||||
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
||||
|
||||
return latents
|
||||
|
||||
@staticmethod
|
||||
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
|
||||
def _unpack_latents(latents, height, width, vae_scale_factor):
|
||||
batch_size, num_patches, channels = latents.shape
|
||||
|
||||
# VAE applies 8x compression on images but we must also account for packing which requires
|
||||
# latent height and width to be divisible by 2.
|
||||
height = 2 * (int(height) // (vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (vae_scale_factor * 2))
|
||||
|
||||
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
||||
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
||||
|
||||
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
|
||||
|
||||
return latents
|
||||
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def enable_vae_tiling(self):
|
||||
r"""
|
||||
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||||
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||||
processing larger images.
|
||||
"""
|
||||
self.vae.enable_tiling()
|
||||
|
||||
def disable_vae_tiling(self):
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_tiling()
|
||||
|
||||
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline.prepare_latents
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
# VAE applies 8x compression on images but we must also account for packing which requires
|
||||
# latent height and width to be divisible by 2.
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
shape = (batch_size, 1, num_channels_latents, height, width)
|
||||
|
||||
if latents is not None:
|
||||
return latents.to(device=device, dtype=dtype)
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
||||
|
||||
return latents
|
||||
|
||||
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
|
||||
def prepare_image(
|
||||
self,
|
||||
image,
|
||||
width,
|
||||
height,
|
||||
batch_size,
|
||||
num_images_per_prompt,
|
||||
device,
|
||||
dtype,
|
||||
do_classifier_free_guidance=False,
|
||||
guess_mode=False,
|
||||
):
|
||||
if isinstance(image, torch.Tensor):
|
||||
pass
|
||||
else:
|
||||
image = self.image_processor.preprocess(image, height=height, width=width)
|
||||
|
||||
image_batch_size = image.shape[0]
|
||||
|
||||
if image_batch_size == 1:
|
||||
repeat_by = batch_size
|
||||
else:
|
||||
# image batch size is the same as prompt batch size
|
||||
repeat_by = num_images_per_prompt
|
||||
|
||||
image = image.repeat_interleave(repeat_by, dim=0)
|
||||
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
|
||||
if do_classifier_free_guidance and not guess_mode:
|
||||
image = torch.cat([image] * 2)
|
||||
|
||||
return image
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def current_timestep(self):
|
||||
return self._current_timestep
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
negative_prompt: Union[str, List[str]] = None,
|
||||
true_cfg_scale: float = 4.0,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 1.0,
|
||||
control_guidance_start: Union[float, List[float]] = 0.0,
|
||||
control_guidance_end: Union[float, List[float]] = 1.0,
|
||||
control_image: PipelineImageInput = None,
|
||||
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
||||
num_images_per_prompt: int = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
||||
not greater than `1`).
|
||||
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
||||
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 3.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion
|
||||
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
||||
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
||||
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
||||
the text `prompt`, usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
|
||||
attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
|
||||
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
||||
returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
height = height or self.default_sample_size * self.vae_scale_factor
|
||||
width = width or self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
||||
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
||||
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
||||
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
||||
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
||||
mult = len(control_image) if isinstance(self.controlnet, QwenImageMultiControlNetModel) else 1
|
||||
control_guidance_start, control_guidance_end = (
|
||||
mult * [control_guidance_start],
|
||||
mult * [control_guidance_end],
|
||||
)
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
prompt_embeds_mask=prompt_embeds_mask,
|
||||
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._current_timestep = None
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
has_neg_prompt = negative_prompt is not None or (
|
||||
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
|
||||
)
|
||||
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
||||
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
prompt_embeds_mask=prompt_embeds_mask,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
if do_true_cfg:
|
||||
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
|
||||
prompt=negative_prompt,
|
||||
prompt_embeds=negative_prompt_embeds,
|
||||
prompt_embeds_mask=negative_prompt_embeds_mask,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
# 3. Prepare control image
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
if isinstance(self.controlnet, QwenImageControlNetModel):
|
||||
control_image = self.prepare_image(
|
||||
image=control_image,
|
||||
width=width,
|
||||
height=height,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=self.vae.dtype,
|
||||
)
|
||||
height, width = control_image.shape[-2:]
|
||||
|
||||
if control_image.ndim == 4:
|
||||
control_image = control_image.unsqueeze(2)
|
||||
|
||||
# vae encode
|
||||
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample)
|
||||
latents_mean = (torch.tensor(self.vae.config.latents_mean).view(1, self.vae.config.z_dim, 1, 1, 1)).to(
|
||||
device
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
||||
device
|
||||
)
|
||||
|
||||
control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
|
||||
control_image = (control_image - latents_mean) * latents_std
|
||||
|
||||
control_image = control_image.permute(0, 2, 1, 3, 4)
|
||||
|
||||
# pack
|
||||
control_image = self._pack_latents(
|
||||
control_image,
|
||||
batch_size=control_image.shape[0],
|
||||
num_channels_latents=num_channels_latents,
|
||||
height=control_image.shape[3],
|
||||
width=control_image.shape[4],
|
||||
).to(dtype=prompt_embeds.dtype, device=device)
|
||||
|
||||
else:
|
||||
if isinstance(self.controlnet, QwenImageMultiControlNetModel):
|
||||
control_images = []
|
||||
for control_image_ in control_image:
|
||||
control_image_ = self.prepare_image(
|
||||
image=control_image_,
|
||||
width=width,
|
||||
height=height,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=self.vae.dtype,
|
||||
)
|
||||
|
||||
height, width = control_image_.shape[-2:]
|
||||
|
||||
if control_image_.ndim == 4:
|
||||
control_image_ = control_image_.unsqueeze(2)
|
||||
|
||||
# vae encode
|
||||
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample)
|
||||
latents_mean = (
|
||||
torch.tensor(self.vae.config.latents_mean).view(1, self.vae.config.z_dim, 1, 1, 1)
|
||||
).to(device)
|
||||
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(
|
||||
1, self.vae.config.z_dim, 1, 1, 1
|
||||
).to(device)
|
||||
|
||||
control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
|
||||
control_image_ = (control_image_ - latents_mean) * latents_std
|
||||
|
||||
control_image_ = control_image_.permute(0, 2, 1, 3, 4)
|
||||
|
||||
# pack
|
||||
control_image_ = self._pack_latents(
|
||||
control_image_,
|
||||
batch_size=control_image_.shape[0],
|
||||
num_channels_latents=num_channels_latents,
|
||||
height=control_image_.shape[3],
|
||||
width=control_image_.shape[4],
|
||||
).to(dtype=prompt_embeds.dtype, device=device)
|
||||
|
||||
control_images.append(control_image_)
|
||||
|
||||
control_image = control_images
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
|
||||
|
||||
# 5. Prepare timesteps
|
||||
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
||||
image_seq_len = latents.shape[1]
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.get("base_image_seq_len", 256),
|
||||
self.scheduler.config.get("max_image_seq_len", 4096),
|
||||
self.scheduler.config.get("base_shift", 0.5),
|
||||
self.scheduler.config.get("max_shift", 1.15),
|
||||
)
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
sigmas=sigmas,
|
||||
mu=mu,
|
||||
)
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
controlnet_keep = []
|
||||
for i in range(len(timesteps)):
|
||||
keeps = [
|
||||
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
||||
for s, e in zip(control_guidance_start, control_guidance_end)
|
||||
]
|
||||
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, QwenImageControlNetModel) else keeps)
|
||||
|
||||
# handle guidance
|
||||
if self.transformer.config.guidance_embeds:
|
||||
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
||||
guidance = guidance.expand(latents.shape[0])
|
||||
else:
|
||||
guidance = None
|
||||
|
||||
if self.attention_kwargs is None:
|
||||
self._attention_kwargs = {}
|
||||
|
||||
# 6. Denoising loop
|
||||
self.scheduler.set_begin_index(0)
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
self._current_timestep = t
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
if isinstance(controlnet_keep[i], list):
|
||||
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
||||
else:
|
||||
controlnet_cond_scale = controlnet_conditioning_scale
|
||||
if isinstance(controlnet_cond_scale, list):
|
||||
controlnet_cond_scale = controlnet_cond_scale[0]
|
||||
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
||||
|
||||
# controlnet
|
||||
controlnet_block_samples = self.controlnet(
|
||||
hidden_states=latents,
|
||||
controlnet_cond=control_image,
|
||||
conditioning_scale=cond_scale,
|
||||
timestep=timestep / 1000,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_hidden_states_mask=prompt_embeds_mask,
|
||||
img_shapes=img_shapes,
|
||||
txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
|
||||
return_dict=False,
|
||||
)
|
||||
|
||||
with self.transformer.cache_context("cond"):
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
timestep=timestep / 1000,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_hidden_states_mask=prompt_embeds_mask,
|
||||
img_shapes=img_shapes,
|
||||
txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
|
||||
controlnet_block_samples=controlnet_block_samples,
|
||||
attention_kwargs=self.attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if do_true_cfg:
|
||||
with self.transformer.cache_context("uncond"):
|
||||
neg_noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
timestep=timestep / 1000,
|
||||
guidance=guidance,
|
||||
encoder_hidden_states_mask=negative_prompt_embeds_mask,
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
img_shapes=img_shapes,
|
||||
txt_seq_lens=negative_prompt_embeds_mask.sum(dim=1).tolist(),
|
||||
controlnet_block_samples=controlnet_block_samples,
|
||||
attention_kwargs=self.attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
||||
|
||||
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
|
||||
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
|
||||
noise_pred = comb_pred * (cond_norm / noise_norm)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents_dtype = latents.dtype
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if latents.dtype != latents_dtype:
|
||||
if torch.backends.mps.is_available():
|
||||
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
||||
latents = latents.to(latents_dtype)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
self._current_timestep = None
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
else:
|
||||
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents_mean = (
|
||||
torch.tensor(self.vae.config.latents_mean)
|
||||
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
||||
.to(latents.device, latents.dtype)
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = latents / latents_std + latents_mean
|
||||
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return QwenImagePipelineOutput(images=image)
|
||||
@@ -1083,6 +1083,36 @@ class PriorTransformer(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class QwenImageControlNetModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class QwenImageMultiControlNetModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class QwenImageTransformer2DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -1757,6 +1757,21 @@ class PixArtSigmaPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class QwenImageControlNetPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class QwenImageEditPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user