1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Rename Lumina(2)Text2ImgPipeline -> Lumina(2)Pipeline (#10827)

* Rename Lumina(2)Text2ImgPipeline -> Lumina(2)Pipeline


---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
This commit is contained in:
hlky
2025-03-13 19:24:21 +00:00
committed by GitHub
parent 20e4b6a628
commit 5551506b29
13 changed files with 136 additions and 42 deletions

View File

@@ -58,10 +58,10 @@ Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fa
First, load the pipeline:
```python
from diffusers import LuminaText2ImgPipeline
from diffusers import LuminaPipeline
import torch
pipeline = LuminaText2ImgPipeline.from_pretrained(
pipeline = LuminaPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16
).to("cuda")
```
@@ -86,11 +86,11 @@ image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit w
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LuminaText2ImgPipeline`] for inference with bitsandbytes.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LuminaPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, Transformer2DModel, LuminaText2ImgPipeline
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, Transformer2DModel, LuminaPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
@@ -109,7 +109,7 @@ transformer_8bit = Transformer2DModel.from_pretrained(
torch_dtype=torch.float16,
)
pipeline = LuminaText2ImgPipeline.from_pretrained(
pipeline = LuminaPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
@@ -122,9 +122,9 @@ image = pipeline(prompt).images[0]
image.save("lumina.png")
```
## LuminaText2ImgPipeline
## LuminaPipeline
[[autodoc]] LuminaText2ImgPipeline
[[autodoc]] LuminaPipeline
- all
- __call__

View File

@@ -36,14 +36,14 @@ Single file loading for Lumina Image 2.0 is available for the `Lumina2Transforme
```python
import torch
from diffusers import Lumina2Transformer2DModel, Lumina2Text2ImgPipeline
from diffusers import Lumina2Transformer2DModel, Lumina2Pipeline
ckpt_path = "https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0/blob/main/consolidated.00-of-01.pth"
transformer = Lumina2Transformer2DModel.from_single_file(
ckpt_path, torch_dtype=torch.bfloat16
)
pipe = Lumina2Text2ImgPipeline.from_pretrained(
pipe = Lumina2Pipeline.from_pretrained(
"Alpha-VLLM/Lumina-Image-2.0", transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
@@ -60,7 +60,7 @@ image.save("lumina-single-file.png")
GGUF Quantized checkpoints for the `Lumina2Transformer2DModel` can be loaded via `from_single_file` with the `GGUFQuantizationConfig`
```python
from diffusers import Lumina2Transformer2DModel, Lumina2Text2ImgPipeline, GGUFQuantizationConfig
from diffusers import Lumina2Transformer2DModel, Lumina2Pipeline, GGUFQuantizationConfig
ckpt_path = "https://huggingface.co/calcuis/lumina-gguf/blob/main/lumina2-q4_0.gguf"
transformer = Lumina2Transformer2DModel.from_single_file(
@@ -69,7 +69,7 @@ transformer = Lumina2Transformer2DModel.from_single_file(
torch_dtype=torch.bfloat16,
)
pipe = Lumina2Text2ImgPipeline.from_pretrained(
pipe = Lumina2Pipeline.from_pretrained(
"Alpha-VLLM/Lumina-Image-2.0", transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
@@ -80,8 +80,8 @@ image = pipe(
image.save("lumina-gguf.png")
```
## Lumina2Text2ImgPipeline
## Lumina2Pipeline
[[autodoc]] Lumina2Text2ImgPipeline
[[autodoc]] Lumina2Pipeline
- all
- __call__

View File

@@ -5,7 +5,7 @@ import torch
from safetensors.torch import load_file
from transformers import AutoModel, AutoTokenizer
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaPipeline
def main(args):
@@ -115,7 +115,7 @@ def main(args):
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
text_encoder = AutoModel.from_pretrained("google/gemma-2b")
pipeline = LuminaText2ImgPipeline(
pipeline = LuminaPipeline(
tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler
)
pipeline.save_pretrained(args.dump_path)

View File

@@ -403,7 +403,9 @@ else:
"LEditsPPPipelineStableDiffusionXL",
"LTXImageToVideoPipeline",
"LTXPipeline",
"Lumina2Pipeline",
"Lumina2Text2ImgPipeline",
"LuminaPipeline",
"LuminaText2ImgPipeline",
"MarigoldDepthPipeline",
"MarigoldIntrinsicsPipeline",
@@ -945,7 +947,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
LEditsPPPipelineStableDiffusionXL,
LTXImageToVideoPipeline,
LTXPipeline,
Lumina2Pipeline,
Lumina2Text2ImgPipeline,
LuminaPipeline,
LuminaText2ImgPipeline,
MarigoldDepthPipeline,
MarigoldIntrinsicsPipeline,

View File

@@ -265,8 +265,8 @@ else:
)
_import_structure["latte"] = ["LattePipeline"]
_import_structure["ltx"] = ["LTXPipeline", "LTXImageToVideoPipeline"]
_import_structure["lumina"] = ["LuminaText2ImgPipeline"]
_import_structure["lumina2"] = ["Lumina2Text2ImgPipeline"]
_import_structure["lumina"] = ["LuminaPipeline", "LuminaText2ImgPipeline"]
_import_structure["lumina2"] = ["Lumina2Pipeline", "Lumina2Text2ImgPipeline"]
_import_structure["marigold"].extend(
[
"MarigoldDepthPipeline",
@@ -619,8 +619,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
LEditsPPPipelineStableDiffusionXL,
)
from .ltx import LTXImageToVideoPipeline, LTXPipeline
from .lumina import LuminaText2ImgPipeline
from .lumina2 import Lumina2Text2ImgPipeline
from .lumina import LuminaPipeline, LuminaText2ImgPipeline
from .lumina2 import Lumina2Pipeline, Lumina2Text2ImgPipeline
from .marigold import (
MarigoldDepthPipeline,
MarigoldIntrinsicsPipeline,

View File

@@ -69,8 +69,8 @@ from .kandinsky2_2 import (
)
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
from .lumina import LuminaText2ImgPipeline
from .lumina2 import Lumina2Text2ImgPipeline
from .lumina import LuminaPipeline
from .lumina2 import Lumina2Pipeline
from .pag import (
HunyuanDiTPAGPipeline,
PixArtSigmaPAGPipeline,
@@ -141,8 +141,8 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
("flux", FluxPipeline),
("flux-control", FluxControlPipeline),
("flux-controlnet", FluxControlNetPipeline),
("lumina", LuminaText2ImgPipeline),
("lumina2", Lumina2Text2ImgPipeline),
("lumina", LuminaPipeline),
("lumina2", Lumina2Pipeline),
("cogview3", CogView3PlusPipeline),
("cogview4", CogView4Pipeline),
]

View File

@@ -22,7 +22,7 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_lumina"] = ["LuminaText2ImgPipeline"]
_import_structure["pipeline_lumina"] = ["LuminaPipeline", "LuminaText2ImgPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -32,7 +32,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_lumina import LuminaText2ImgPipeline
from .pipeline_lumina import LuminaPipeline, LuminaText2ImgPipeline
else:
import sys

View File

@@ -30,6 +30,7 @@ from ...models.transformers.lumina_nextdit2d import LuminaNextDiT2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import (
BACKENDS_MAPPING,
deprecate,
is_bs4_available,
is_ftfy_available,
is_torch_xla_available,
@@ -60,11 +61,9 @@ EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import LuminaText2ImgPipeline
>>> from diffusers import LuminaPipeline
>>> pipe = LuminaText2ImgPipeline.from_pretrained(
... "Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16
... )
>>> pipe = LuminaPipeline.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16)
>>> # Enable memory optimizations.
>>> pipe.enable_model_cpu_offload()
@@ -134,7 +133,7 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
class LuminaText2ImgPipeline(DiffusionPipeline):
class LuminaPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Lumina-T2I.
@@ -932,3 +931,23 @@ class LuminaText2ImgPipeline(DiffusionPipeline):
return (image,)
return ImagePipelineOutput(images=image)
class LuminaText2ImgPipeline(LuminaPipeline):
def __init__(
self,
transformer: LuminaNextDiT2DModel,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
text_encoder: GemmaPreTrainedModel,
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
):
deprecation_message = "`LuminaText2ImgPipeline` has been renamed to `LuminaPipeline` and will be removed in a future version. Please use `LuminaPipeline` instead."
deprecate("diffusers.pipelines.lumina.pipeline_lumina.LuminaText2ImgPipeline", "0.34", deprecation_message)
super().__init__(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)

View File

@@ -22,7 +22,7 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_lumina2"] = ["Lumina2Text2ImgPipeline"]
_import_structure["pipeline_lumina2"] = ["Lumina2Pipeline", "Lumina2Text2ImgPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -32,7 +32,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_lumina2 import Lumina2Text2ImgPipeline
from .pipeline_lumina2 import Lumina2Pipeline, Lumina2Text2ImgPipeline
else:
import sys

View File

@@ -25,6 +25,7 @@ from ...models import AutoencoderKL
from ...models.transformers.transformer_lumina2 import Lumina2Transformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import (
deprecate,
is_torch_xla_available,
logging,
replace_example_docstring,
@@ -47,9 +48,9 @@ EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import Lumina2Text2ImgPipeline
>>> from diffusers import Lumina2Pipeline
>>> pipe = Lumina2Text2ImgPipeline.from_pretrained("Alpha-VLLM/Lumina-Image-2.0", torch_dtype=torch.bfloat16)
>>> pipe = Lumina2Pipeline.from_pretrained("Alpha-VLLM/Lumina-Image-2.0", torch_dtype=torch.bfloat16)
>>> # Enable memory optimizations.
>>> pipe.enable_model_cpu_offload()
@@ -133,7 +134,7 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
class Lumina2Text2ImgPipeline(DiffusionPipeline, Lumina2LoraLoaderMixin):
class Lumina2Pipeline(DiffusionPipeline, Lumina2LoraLoaderMixin):
r"""
Pipeline for text-to-image generation using Lumina-T2I.
@@ -767,3 +768,23 @@ class Lumina2Text2ImgPipeline(DiffusionPipeline, Lumina2LoraLoaderMixin):
return (image,)
return ImagePipelineOutput(images=image)
class Lumina2Text2ImgPipeline(Lumina2Pipeline):
def __init__(
self,
transformer: Lumina2Transformer2DModel,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
text_encoder: Gemma2PreTrainedModel,
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
):
deprecation_message = "`Lumina2Text2ImgPipeline` has been renamed to `Lumina2Pipeline` and will be removed in a future version. Please use `Lumina2Pipeline` instead."
deprecate("diffusers.pipelines.lumina2.pipeline_lumina2.Lumina2Text2ImgPipeline", "0.34", deprecation_message)
super().__init__(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)

View File

@@ -1232,6 +1232,21 @@ class LTXPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class Lumina2Pipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Lumina2Text2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -1247,6 +1262,21 @@ class Lumina2Text2ImgPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class LuminaPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class LuminaText2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -5,7 +5,13 @@ import numpy as np
import torch
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
LuminaNextDiT2DModel,
LuminaPipeline,
LuminaText2ImgPipeline,
)
from diffusers.utils.testing_utils import (
backend_empty_cache,
numpy_cosine_similarity_distance,
@@ -17,8 +23,8 @@ from diffusers.utils.testing_utils import (
from ..test_pipelines_common import PipelineTesterMixin
class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = LuminaText2ImgPipeline
class LuminaPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = LuminaPipeline
params = frozenset(
[
"prompt",
@@ -99,11 +105,17 @@ class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterM
def test_xformers_attention_forwardGenerator_pass(self):
pass
def test_deprecation_raises_warning(self):
with self.assertWarns(FutureWarning) as warning:
_ = LuminaText2ImgPipeline(**self.get_dummy_components()).to(torch_device)
warning_message = str(warning.warnings[0].message)
assert "renamed to `LuminaPipeline`" in warning_message
@slow
@require_torch_accelerator
class LuminaText2ImgPipelineSlowTests(unittest.TestCase):
pipeline_class = LuminaText2ImgPipeline
class LuminaPipelineSlowTests(unittest.TestCase):
pipeline_class = LuminaPipeline
repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers"
def setUp(self):

View File

@@ -6,15 +6,17 @@ from transformers import AutoTokenizer, Gemma2Config, Gemma2Model
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
Lumina2Pipeline,
Lumina2Text2ImgPipeline,
Lumina2Transformer2DModel,
)
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import PipelineTesterMixin
class Lumina2Text2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = Lumina2Text2ImgPipeline
class Lumina2PipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = Lumina2Pipeline
params = frozenset(
[
"prompt",
@@ -115,3 +117,9 @@ class Lumina2Text2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTester
"output_type": "np",
}
return inputs
def test_deprecation_raises_warning(self):
with self.assertWarns(FutureWarning) as warning:
_ = Lumina2Text2ImgPipeline(**self.get_dummy_components()).to(torch_device)
warning_message = str(warning.warnings[0].message)
assert "renamed to `Lumina2Pipeline`" in warning_message