1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

use export util funcs.

This commit is contained in:
sayakpaul
2026-01-06 09:14:38 +05:30
parent c039c87b99
commit 550eca3530
2 changed files with 2 additions and 216 deletions

View File

@@ -1,117 +1,10 @@
import argparse
import os
from fractions import Fraction
from typing import Optional
import av # Needs to be installed separately (`pip install av`)
import torch
from diffusers import LTX2Pipeline
# Video export functions copied from original LTX 2.0 code
def _prepare_audio_stream(container: av.container.Container, audio_sample_rate: int) -> av.audio.AudioStream:
"""
Prepare the audio stream for writing.
"""
audio_stream = container.add_stream("aac", rate=audio_sample_rate)
audio_stream.codec_context.sample_rate = audio_sample_rate
audio_stream.codec_context.layout = "stereo"
audio_stream.codec_context.time_base = Fraction(1, audio_sample_rate)
return audio_stream
def _resample_audio(
container: av.container.Container, audio_stream: av.audio.AudioStream, frame_in: av.AudioFrame
) -> None:
cc = audio_stream.codec_context
# Use the encoder's format/layout/rate as the *target*
target_format = cc.format or "fltp" # AAC → usually fltp
target_layout = cc.layout or "stereo"
target_rate = cc.sample_rate or frame_in.sample_rate
audio_resampler = av.audio.resampler.AudioResampler(
format=target_format,
layout=target_layout,
rate=target_rate,
)
audio_next_pts = 0
for rframe in audio_resampler.resample(frame_in):
if rframe.pts is None:
rframe.pts = audio_next_pts
audio_next_pts += rframe.samples
rframe.sample_rate = frame_in.sample_rate
container.mux(audio_stream.encode(rframe))
# flush audio encoder
for packet in audio_stream.encode():
container.mux(packet)
def _write_audio(
container: av.container.Container,
audio_stream: av.audio.AudioStream,
samples: torch.Tensor,
audio_sample_rate: int,
) -> None:
if samples.ndim == 1:
samples = samples[:, None]
if samples.shape[1] != 2 and samples.shape[0] == 2:
samples = samples.T
if samples.shape[1] != 2:
raise ValueError(f"Expected samples with 2 channels; got shape {samples.shape}.")
# Convert to int16 packed for ingestion; resampler converts to encoder fmt.
if samples.dtype != torch.int16:
samples = torch.clip(samples, -1.0, 1.0)
samples = (samples * 32767.0).to(torch.int16)
frame_in = av.AudioFrame.from_ndarray(
samples.contiguous().reshape(1, -1).cpu().numpy(),
format="s16",
layout="stereo",
)
frame_in.sample_rate = audio_sample_rate
_resample_audio(container, audio_stream, frame_in)
def encode_video(
video: torch.Tensor, fps: int, audio: Optional[torch.Tensor], audio_sample_rate: Optional[int], output_path: str
) -> None:
video_np = video.cpu().numpy()
_, height, width, _ = video_np.shape
container = av.open(output_path, mode="w")
stream = container.add_stream("libx264", rate=int(fps))
stream.width = width
stream.height = height
stream.pix_fmt = "yuv420p"
if audio is not None:
if audio_sample_rate is None:
raise ValueError("audio_sample_rate is required when audio is provided")
audio_stream = _prepare_audio_stream(container, audio_sample_rate)
for frame_array in video_np:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush encoder
for packet in stream.encode():
container.mux(packet)
if audio is not None:
_write_audio(container, audio_stream, audio, audio_sample_rate)
container.close()
from diffusers.pipelines.ltx2.export_utils import encode_video
def parse_args():

View File

@@ -1,118 +1,11 @@
import argparse
import os
from fractions import Fraction
from typing import Optional
import av # Needs to be installed separately (`pip install av`)
import torch
from PIL import Image
from diffusers.pipelines.ltx2 import LTX2ImageToVideoPipeline
# Video export functions copied from original LTX 2.0 code
def _prepare_audio_stream(container: av.container.Container, audio_sample_rate: int) -> av.audio.AudioStream:
"""
Prepare the audio stream for writing.
"""
audio_stream = container.add_stream("aac", rate=audio_sample_rate)
audio_stream.codec_context.sample_rate = audio_sample_rate
audio_stream.codec_context.layout = "stereo"
audio_stream.codec_context.time_base = Fraction(1, audio_sample_rate)
return audio_stream
def _resample_audio(
container: av.container.Container, audio_stream: av.audio.AudioStream, frame_in: av.AudioFrame
) -> None:
cc = audio_stream.codec_context
# Use the encoder's format/layout/rate as the *target*
target_format = cc.format or "fltp" # AAC → usually fltp
target_layout = cc.layout or "stereo"
target_rate = cc.sample_rate or frame_in.sample_rate
audio_resampler = av.audio.resampler.AudioResampler(
format=target_format,
layout=target_layout,
rate=target_rate,
)
audio_next_pts = 0
for rframe in audio_resampler.resample(frame_in):
if rframe.pts is None:
rframe.pts = audio_next_pts
audio_next_pts += rframe.samples
rframe.sample_rate = frame_in.sample_rate
container.mux(audio_stream.encode(rframe))
# flush audio encoder
for packet in audio_stream.encode():
container.mux(packet)
def _write_audio(
container: av.container.Container,
audio_stream: av.audio.AudioStream,
samples: torch.Tensor,
audio_sample_rate: int,
) -> None:
if samples.ndim == 1:
samples = samples[:, None]
if samples.shape[1] != 2 and samples.shape[0] == 2:
samples = samples.T
if samples.shape[1] != 2:
raise ValueError(f"Expected samples with 2 channels; got shape {samples.shape}.")
# Convert to int16 packed for ingestion; resampler converts to encoder fmt.
if samples.dtype != torch.int16:
samples = torch.clip(samples, -1.0, 1.0)
samples = (samples * 32767.0).to(torch.int16)
frame_in = av.AudioFrame.from_ndarray(
samples.contiguous().reshape(1, -1).cpu().numpy(),
format="s16",
layout="stereo",
)
frame_in.sample_rate = audio_sample_rate
_resample_audio(container, audio_stream, frame_in)
def encode_video(
video: torch.Tensor, fps: int, audio: Optional[torch.Tensor], audio_sample_rate: Optional[int], output_path: str
) -> None:
video_np = video.cpu().numpy()
_, height, width, _ = video_np.shape
container = av.open(output_path, mode="w")
stream = container.add_stream("libx264", rate=int(fps))
stream.width = width
stream.height = height
stream.pix_fmt = "yuv420p"
if audio is not None:
if audio_sample_rate is None:
raise ValueError("audio_sample_rate is required when audio is provided")
audio_stream = _prepare_audio_stream(container, audio_sample_rate)
for frame_array in video_np:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush encoder
for packet in stream.encode():
container.mux(packet)
if audio is not None:
_write_audio(container, audio_stream, audio, audio_sample_rate)
container.close()
from diffusers.pipelines.ltx2.export_utils import encode_video
def parse_args():