1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

revert prints.

This commit is contained in:
sayakpaul
2023-08-23 17:01:25 +05:30
parent 54e683f773
commit 52bc39c997
3 changed files with 2 additions and 7 deletions

View File

@@ -136,7 +136,6 @@ class FullAdapter(nn.Module):
downscale_factor: int = 8,
):
super().__init__()
print(f"From {self.__class__} channels: {channels}.")
in_channels = in_channels * downscale_factor**2
@@ -164,7 +163,7 @@ class FullAdapter(nn.Module):
for block in self.body:
x = block(x)
features.append(x)
print(f"Number of features: {len(features)}")
return features
@@ -293,7 +292,7 @@ class LightAdapter(nn.Module):
for block in self.body:
x = block(x)
features.append(x)
print(f"Number of features: {len(features)}")
return features

View File

@@ -920,7 +920,6 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
down_block_res_samples = (sample,)
print(f"From UNet before down blocks: {len(down_block_additional_residuals)}")
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
# For t2i-adapter CrossAttnDownBlock2D
@@ -967,7 +966,6 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
encoder_attention_mask=encoder_attention_mask,
)
# To support T2I-Adapter-XL
print(f"From UNet in mid block: {len(down_block_additional_residuals)}")
if is_adapter and len(down_block_additional_residuals) > 0:
sample += down_block_additional_residuals.pop(0)

View File

@@ -711,7 +711,6 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
# 7. Denoising loop
adapter_state = self.adapter(adapter_input)
print(f"From pipeline (before rejigging): {len(adapter_state)}.")
for k, v in enumerate(adapter_state):
adapter_state[k] = v * adapter_conditioning_scale
if num_images_per_prompt > 1:
@@ -720,7 +719,6 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
if do_classifier_free_guidance:
for k, v in enumerate(adapter_state):
adapter_state[k] = torch.cat([v] * 2, dim=0)
print(f"From pipeline (after rejigging): {len(adapter_state)}.")
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar: