mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[tests] HunyuanDiTControlNetPipeline inference precision issue on XPU (#11197)
* add xpu part * fix more cases * remove some cases * no canny * format fix
This commit is contained in:
@@ -153,9 +153,14 @@ class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMix
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
assert image.shape == (1, 16, 16, 3)
|
||||
|
||||
expected_slice = np.array(
|
||||
[0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094]
|
||||
)
|
||||
if torch_device == "xpu":
|
||||
expected_slice = np.array(
|
||||
[0.6376953, 0.84375, 0.58691406, 0.48046875, 0.43652344, 0.5517578, 0.54248047, 0.5644531, 0.48217773]
|
||||
)
|
||||
else:
|
||||
expected_slice = np.array(
|
||||
[0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094]
|
||||
)
|
||||
|
||||
assert (
|
||||
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
||||
@@ -351,6 +356,7 @@ class HunyuanDiTControlNetPipelineSlowTests(unittest.TestCase):
|
||||
assert image.shape == (1024, 1024, 3)
|
||||
|
||||
original_image = image[-3:, -3:, -1].flatten()
|
||||
|
||||
expected_image = np.array(
|
||||
[0.43652344, 0.44018555, 0.4494629, 0.44995117, 0.45654297, 0.44848633, 0.43603516, 0.4404297, 0.42626953]
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user