mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
make style
This commit is contained in:
@@ -150,81 +150,6 @@ class Downsample(nn.Module):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
# class UNetUpsample(nn.Module):
|
||||
# def __init__(self, in_channels, with_conv):
|
||||
# super().__init__()
|
||||
# self.with_conv = with_conv
|
||||
# if self.with_conv:
|
||||
# self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
# if self.with_conv:
|
||||
# x = self.conv(x)
|
||||
# return x
|
||||
#
|
||||
#
|
||||
# class GlideUpsample(nn.Module):
|
||||
# """
|
||||
# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param #
|
||||
use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If
|
||||
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
|
||||
#
|
||||
# def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
# super().__init__()
|
||||
# self.channels = channels
|
||||
# self.out_channels = out_channels or channels
|
||||
# self.use_conv = use_conv
|
||||
# self.dims = dims
|
||||
# if use_conv:
|
||||
# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# assert x.shape[1] == self.channels
|
||||
# if self.dims == 3:
|
||||
# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
# else:
|
||||
# x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
# if self.use_conv:
|
||||
# x = self.conv(x)
|
||||
# return x
|
||||
#
|
||||
#
|
||||
# class LDMUpsample(nn.Module):
|
||||
# """
|
||||
# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param # #
|
||||
use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If
|
||||
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
|
||||
#
|
||||
# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
# super().__init__()
|
||||
# self.channels = channels
|
||||
# self.out_channels = out_channels or channels
|
||||
# self.use_conv = use_conv
|
||||
# self.dims = dims
|
||||
# if use_conv:
|
||||
# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# assert x.shape[1] == self.channels
|
||||
# if self.dims == 3:
|
||||
# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
# else:
|
||||
# x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
# if self.use_conv:
|
||||
# x = self.conv(x)
|
||||
# return x
|
||||
#
|
||||
#
|
||||
# class GradTTSUpsample(torch.nn.Module):
|
||||
# def __init__(self, dim):
|
||||
# super(Upsample, self).__init__()
|
||||
# self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# return self.conv(x)
|
||||
#
|
||||
#
|
||||
# TODO (patil-suraj): needs test
|
||||
# class Upsample1d(nn.Module):
|
||||
# def __init__(self, dim):
|
||||
|
||||
Reference in New Issue
Block a user