1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

make style

This commit is contained in:
Patrick von Platen
2022-06-29 14:39:39 +00:00
parent eb90d3be13
commit 519bd41ff3

View File

@@ -150,81 +150,6 @@ class Downsample(nn.Module):
return self.op(x)
# class UNetUpsample(nn.Module):
# def __init__(self, in_channels, with_conv):
# super().__init__()
# self.with_conv = with_conv
# if self.with_conv:
# self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
#
# def forward(self, x):
# x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
# if self.with_conv:
# x = self.conv(x)
# return x
#
#
# class GlideUpsample(nn.Module):
# """
# An upsampling layer with an optional convolution. # # :param channels: channels in the inputs and outputs. :param #
use_conv: a bool determining if a convolution is # applied. :param dims: determines if the signal is 1D, 2D, or 3D. If
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
#
# def __init__(self, channels, use_conv, dims=2, out_channels=None):
# super().__init__()
# self.channels = channels
# self.out_channels = out_channels or channels
# self.use_conv = use_conv
# self.dims = dims
# if use_conv:
# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
#
# def forward(self, x):
# assert x.shape[1] == self.channels
# if self.dims == 3:
# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
# else:
# x = F.interpolate(x, scale_factor=2, mode="nearest")
# if self.use_conv:
# x = self.conv(x)
# return x
#
#
# class LDMUpsample(nn.Module):
# """
# An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param # #
use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. # If
# 3D, then # upsampling occurs in the inner-two dimensions. #"""
#
# def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
# super().__init__()
# self.channels = channels
# self.out_channels = out_channels or channels
# self.use_conv = use_conv
# self.dims = dims
# if use_conv:
# self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
#
# def forward(self, x):
# assert x.shape[1] == self.channels
# if self.dims == 3:
# x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
# else:
# x = F.interpolate(x, scale_factor=2, mode="nearest")
# if self.use_conv:
# x = self.conv(x)
# return x
#
#
# class GradTTSUpsample(torch.nn.Module):
# def __init__(self, dim):
# super(Upsample, self).__init__()
# self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
#
# def forward(self, x):
# return self.conv(x)
#
#
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
# def __init__(self, dim):