mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Regarding the RunwayML path for V1.5 did change to stable-diffusion-v1-5/[stable-diffusion-v1-5/ stable-diffusion-inpainting] (#10476)
* Update pipeline_controlnet.py * Update pipeline_controlnet_img2img.py runwayml Take-down so change all from to this stable-diffusion-v1-5/stable-diffusion-v1-5 * Update pipeline_controlnet_inpaint.py * runwayml take-down make change to sd-legacy * runwayml take-down make change to sd-legacy * runwayml take-down make change to sd-legacy * runwayml take-down make change to sd-legacy * Update convert_blipdiffusion_to_diffusers.py style change
This commit is contained in:
@@ -160,7 +160,7 @@ to trigger concept `{key}` → use `{tokens}` in your prompt \n
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
import torch
|
||||
{diffusers_imports_pivotal}
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
|
||||
pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors')
|
||||
{diffusers_example_pivotal}
|
||||
image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0]
|
||||
|
||||
@@ -303,10 +303,9 @@ def save_blip_diffusion_model(model, args):
|
||||
qformer = get_qformer(model)
|
||||
qformer.eval()
|
||||
|
||||
text_encoder = ContextCLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
|
||||
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
|
||||
|
||||
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
||||
text_encoder = ContextCLIPTextModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="text_encoder")
|
||||
vae = AutoencoderKL.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="vae")
|
||||
unet = UNet2DConditionModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
|
||||
vae.eval()
|
||||
text_encoder.eval()
|
||||
scheduler = PNDMScheduler(
|
||||
@@ -316,7 +315,7 @@ def save_blip_diffusion_model(model, args):
|
||||
set_alpha_to_one=False,
|
||||
skip_prk_steps=True,
|
||||
)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
|
||||
tokenizer = CLIPTokenizer.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="tokenizer")
|
||||
image_processor = BlipImageProcessor()
|
||||
blip_diffusion = BlipDiffusionPipeline(
|
||||
tokenizer=tokenizer,
|
||||
|
||||
@@ -329,7 +329,7 @@ class FromSingleFileMixin:
|
||||
|
||||
>>> # Enable float16 and move to GPU
|
||||
>>> pipeline = StableDiffusionPipeline.from_single_file(
|
||||
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
|
||||
... "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
|
||||
... torch_dtype=torch.float16,
|
||||
... )
|
||||
>>> pipeline.to("cuda")
|
||||
|
||||
@@ -333,7 +333,7 @@ class TextualInversionLoaderMixin:
|
||||
from diffusers import StableDiffusionPipeline
|
||||
import torch
|
||||
|
||||
model_id = "runwayml/stable-diffusion-v1-5"
|
||||
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
||||
|
||||
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
|
||||
@@ -352,7 +352,7 @@ class TextualInversionLoaderMixin:
|
||||
from diffusers import StableDiffusionPipeline
|
||||
import torch
|
||||
|
||||
model_id = "runwayml/stable-diffusion-v1-5"
|
||||
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
||||
|
||||
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
|
||||
@@ -469,7 +469,7 @@ class TextualInversionLoaderMixin:
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
import torch
|
||||
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
|
||||
|
||||
# Example 1
|
||||
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
|
||||
|
||||
@@ -60,7 +60,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
||||
|
||||
>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
|
||||
>>> pipe = StableDiffusionPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
|
||||
... ).to("cuda")
|
||||
|
||||
>>> image = pipe("horse", generator=torch.manual_seed(0)).images[0]
|
||||
|
||||
@@ -293,7 +293,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
||||
If you get the error message below, you need to finetune the weights for your downstream task:
|
||||
|
||||
```
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
||||
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
||||
```
|
||||
@@ -385,7 +385,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
||||
```py
|
||||
>>> from diffusers import AutoPipelineForText2Image
|
||||
|
||||
>>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
>>> pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
|
||||
>>> image = pipeline(prompt).images[0]
|
||||
```
|
||||
"""
|
||||
@@ -448,7 +448,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
||||
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
|
||||
|
||||
>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
|
||||
... )
|
||||
|
||||
>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
|
||||
@@ -589,7 +589,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
||||
If you get the error message below, you need to finetune the weights for your downstream task:
|
||||
|
||||
```
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
||||
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
||||
```
|
||||
@@ -681,7 +681,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
||||
```py
|
||||
>>> from diffusers import AutoPipelineForImage2Image
|
||||
|
||||
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
|
||||
>>> image = pipeline(prompt, image).images[0]
|
||||
```
|
||||
"""
|
||||
@@ -756,7 +756,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
||||
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
|
||||
|
||||
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
|
||||
... )
|
||||
|
||||
>>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
|
||||
@@ -900,7 +900,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
||||
If you get the error message below, you need to finetune the weights for your downstream task:
|
||||
|
||||
```
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
||||
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
||||
```
|
||||
@@ -992,7 +992,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
||||
```py
|
||||
>>> from diffusers import AutoPipelineForInpainting
|
||||
|
||||
>>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
>>> pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
|
||||
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
|
||||
```
|
||||
"""
|
||||
|
||||
@@ -80,7 +80,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> # load control net and stable diffusion v1-5
|
||||
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
||||
>>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||||
... )
|
||||
|
||||
>>> # speed up diffusion process with faster scheduler and memory optimization
|
||||
@@ -198,7 +198,7 @@ class StableDiffusionControlNetPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -71,7 +71,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> # load control net and stable diffusion v1-5
|
||||
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
||||
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||||
... )
|
||||
|
||||
>>> # speed up diffusion process with faster scheduler and memory optimization
|
||||
@@ -168,7 +168,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -83,7 +83,7 @@ EXAMPLE_DOC_STRING = """
|
||||
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
|
||||
... )
|
||||
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||||
... )
|
||||
|
||||
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
||||
@@ -141,9 +141,9 @@ class StableDiffusionControlNetInpaintPipeline(
|
||||
<Tip>
|
||||
|
||||
This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
|
||||
([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as
|
||||
([stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)) as well as
|
||||
default text-to-image Stable Diffusion checkpoints
|
||||
([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image
|
||||
([stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)). Default text-to-image
|
||||
Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as
|
||||
[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
|
||||
|
||||
@@ -167,7 +167,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -1622,7 +1622,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
||||
|
||||
# 8. Check that sizes of mask, masked image and latents match
|
||||
if num_channels_unet == 9:
|
||||
# default case for runwayml/stable-diffusion-inpainting
|
||||
# default case for stable-diffusion-v1-5/stable-diffusion-inpainting
|
||||
num_channels_mask = mask.shape[1]
|
||||
num_channels_masked_image = masked_image_latents.shape[1]
|
||||
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
||||
|
||||
@@ -75,7 +75,7 @@ EXAMPLE_DOC_STRING = """
|
||||
... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32
|
||||
... )
|
||||
>>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
|
||||
... )
|
||||
>>> params["controlnet"] = controlnet_params
|
||||
|
||||
@@ -132,7 +132,7 @@ class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline):
|
||||
[`FlaxDPMSolverMultistepScheduler`].
|
||||
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -237,14 +237,14 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
If you get the error message below, you need to finetune the weights for your downstream task:
|
||||
|
||||
```
|
||||
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
```
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
||||
Can be either:
|
||||
|
||||
- A string, the *repo id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained pipeline
|
||||
- A string, the *repo id* (for example `stable-diffusion-v1-5/stable-diffusion-v1-5`) of a pretrained pipeline
|
||||
hosted on the Hub.
|
||||
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
||||
using [`~FlaxDiffusionPipeline.save_pretrained`].
|
||||
@@ -293,7 +293,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
>>> # Requires to be logged in to Hugging Face hub,
|
||||
>>> # see more in [the documentation](https://huggingface.co/docs/hub/security-tokens)
|
||||
>>> pipeline, params = FlaxDiffusionPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5",
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5",
|
||||
... variant="bf16",
|
||||
... dtype=jnp.bfloat16,
|
||||
... )
|
||||
@@ -301,7 +301,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
>>> # Download pipeline, but use a different scheduler
|
||||
>>> from diffusers import FlaxDPMSolverMultistepScheduler
|
||||
|
||||
>>> model_id = "runwayml/stable-diffusion-v1-5"
|
||||
>>> model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
>>> dpmpp, dpmpp_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
|
||||
... model_id,
|
||||
... subfolder="scheduler",
|
||||
@@ -559,7 +559,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
... )
|
||||
|
||||
>>> text2img = FlaxStableDiffusionPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16
|
||||
... )
|
||||
>>> img2img = FlaxStableDiffusionImg2ImgPipeline(**text2img.components)
|
||||
```
|
||||
|
||||
@@ -813,9 +813,9 @@ def _maybe_raise_warning_for_inpainting(pipeline_class, pretrained_model_name_or
|
||||
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
|
||||
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
|
||||
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
|
||||
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
|
||||
" checkpoint: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting instead or adapting your"
|
||||
f" checkpoint {pretrained_model_name_or_path} to the format of"
|
||||
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
|
||||
" https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting. Note that we do not actively maintain"
|
||||
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
|
||||
)
|
||||
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)
|
||||
|
||||
@@ -516,7 +516,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
If you get the error message below, you need to finetune the weights for your downstream task:
|
||||
|
||||
```
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
||||
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
||||
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
||||
```
|
||||
@@ -643,7 +643,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
>>> # Download pipeline that requires an authorization token
|
||||
>>> # For more information on access tokens, please refer to this section
|
||||
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
|
||||
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
|
||||
|
||||
>>> # Use a different scheduler
|
||||
>>> from diffusers import LMSDiscreteScheduler
|
||||
@@ -1555,7 +1555,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
... StableDiffusionInpaintPipeline,
|
||||
... )
|
||||
|
||||
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
>>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
|
||||
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
|
||||
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
|
||||
```
|
||||
@@ -1688,7 +1688,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
>>> from diffusers import StableDiffusionPipeline
|
||||
|
||||
>>> pipe = StableDiffusionPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5",
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5",
|
||||
... torch_dtype=torch.float16,
|
||||
... use_safetensors=True,
|
||||
... )
|
||||
@@ -1735,7 +1735,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
```py
|
||||
>>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline
|
||||
|
||||
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
>>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
|
||||
>>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
|
||||
```
|
||||
"""
|
||||
|
||||
@@ -55,7 +55,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> from diffusers import FlaxStableDiffusionPipeline
|
||||
|
||||
>>> pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16
|
||||
... )
|
||||
|
||||
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
||||
@@ -100,7 +100,7 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
|
||||
[`FlaxDPMSolverMultistepScheduler`].
|
||||
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -141,8 +141,8 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -124,7 +124,7 @@ class FlaxStableDiffusionImg2ImgPipeline(FlaxDiffusionPipeline):
|
||||
[`FlaxDPMSolverMultistepScheduler`].
|
||||
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -127,7 +127,7 @@ class FlaxStableDiffusionInpaintPipeline(FlaxDiffusionPipeline):
|
||||
[`FlaxDPMSolverMultistepScheduler`].
|
||||
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -168,8 +168,8 @@ class FlaxStableDiffusionInpaintPipeline(FlaxDiffusionPipeline):
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -78,7 +78,7 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
||||
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
|
||||
feature_extractor ([`CLIPImageProcessor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
|
||||
@@ -76,7 +76,7 @@ class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline):
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
||||
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
|
||||
feature_extractor ([`CLIPImageProcessor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
|
||||
@@ -55,7 +55,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> import torch
|
||||
>>> from diffusers import StableDiffusionPipeline
|
||||
|
||||
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
||||
>>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
||||
>>> pipe = pipe.to("cuda")
|
||||
|
||||
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
||||
@@ -184,7 +184,7 @@ class StableDiffusionPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -266,8 +266,8 @@ class StableDiffusionPipeline(
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -124,8 +124,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -57,7 +57,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -106,8 +106,8 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -56,7 +56,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> from diffusers import StableDiffusionImg2ImgPipeline
|
||||
|
||||
>>> device = "cuda"
|
||||
>>> model_id_or_path = "runwayml/stable-diffusion-v1-5"
|
||||
>>> model_id_or_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
>>> pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
|
||||
>>> pipe = pipe.to(device)
|
||||
|
||||
@@ -205,7 +205,7 @@ class StableDiffusionImg2ImgPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -282,8 +282,8 @@ class StableDiffusionImg2ImgPipeline(
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -146,7 +146,7 @@ class StableDiffusionInpaintPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -224,8 +224,8 @@ class StableDiffusionInpaintPipeline(
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
@@ -1014,7 +1014,7 @@ class StableDiffusionInpaintPipeline(
|
||||
>>> mask_image = download_image(mask_url).resize((512, 512))
|
||||
|
||||
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16
|
||||
... )
|
||||
>>> pipe = pipe.to("cuda")
|
||||
|
||||
@@ -1200,7 +1200,7 @@ class StableDiffusionInpaintPipeline(
|
||||
|
||||
# 8. Check that sizes of mask, masked image and latents match
|
||||
if num_channels_unet == 9:
|
||||
# default case for runwayml/stable-diffusion-inpainting
|
||||
# default case for stable-diffusion-v1-5/stable-diffusion-inpainting
|
||||
num_channels_mask = mask.shape[1]
|
||||
num_channels_masked_image = masked_image_latents.shape[1]
|
||||
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
||||
|
||||
@@ -114,7 +114,7 @@ class StableDiffusionInstructPix2PixPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -194,7 +194,7 @@ class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, StableDiffusionM
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -268,7 +268,7 @@ class StableDiffusionDiffEditPipeline(
|
||||
A scheduler to be used in combination with `unet` to fill in the unmasked part of the input latents.
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -345,8 +345,8 @@ class StableDiffusionDiffEditPipeline(
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -120,7 +120,7 @@ class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin):
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -172,7 +172,7 @@ class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline, StableDiffusionM
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -83,7 +83,7 @@ class StableDiffusionKDiffusionPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
||||
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
|
||||
feature_extractor ([`CLIPImageProcessor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
|
||||
@@ -203,7 +203,7 @@ class StableDiffusionLDM3DPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -179,7 +179,7 @@ class StableDiffusionPanoramaPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -46,7 +46,7 @@ class StableDiffusionPipelineSafe(DiffusionPipeline, StableDiffusionMixin, IPAda
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
@@ -126,8 +126,8 @@ class StableDiffusionPipelineSafe(DiffusionPipeline, StableDiffusionMixin, IPAda
|
||||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||||
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||||
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||||
|
||||
@@ -47,7 +47,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> from diffusers import StableDiffusionSAGPipeline
|
||||
|
||||
>>> pipe = StableDiffusionSAGPipeline.from_pretrained(
|
||||
... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
|
||||
... "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
|
||||
... )
|
||||
>>> pipe = pipe.to("cuda")
|
||||
|
||||
@@ -123,7 +123,7 @@ class StableDiffusionSAGPipeline(DiffusionPipeline, StableDiffusionMixin, Textua
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
||||
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
@@ -208,7 +208,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin):
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
||||
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
|
||||
feature_extractor ([`CLIPImageProcessor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
|
||||
@@ -248,7 +248,7 @@ class StableDiffusionXLAdapterPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
||||
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
|
||||
feature_extractor ([`CLIPImageProcessor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
|
||||
@@ -322,7 +322,7 @@ class TextToVideoZeroPipeline(
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
||||
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
||||
about a model's potential harms.
|
||||
feature_extractor ([`CLIPImageProcessor`]):
|
||||
A [`CLIPImageProcessor`] to extract features from generated images; used as inputs to the `safety_checker`.
|
||||
|
||||
Reference in New Issue
Block a user