mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Full Dreambooth IF stage II upscaling (#3561)
* update dreambooth lora to work with IF stage II * Update dreambooth script for IF stage II upscaler
This commit is contained in:
@@ -52,6 +52,7 @@ from diffusers import (
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.utils import check_min_version, is_wandb_available
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
|
||||
if is_wandb_available():
|
||||
@@ -114,16 +115,17 @@ def log_validation(
|
||||
|
||||
pipeline_args = {}
|
||||
|
||||
if text_encoder is not None:
|
||||
pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder)
|
||||
|
||||
if vae is not None:
|
||||
pipeline_args["vae"] = vae
|
||||
|
||||
if text_encoder is not None:
|
||||
text_encoder = accelerator.unwrap_model(text_encoder)
|
||||
|
||||
# create pipeline (note: unet and vae are loaded again in float32)
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
args.pretrained_model_name_or_path,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
unet=accelerator.unwrap_model(unet),
|
||||
revision=args.revision,
|
||||
torch_dtype=weight_dtype,
|
||||
@@ -156,10 +158,16 @@ def log_validation(
|
||||
# run inference
|
||||
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
||||
images = []
|
||||
for _ in range(args.num_validation_images):
|
||||
with torch.autocast("cuda"):
|
||||
image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
|
||||
images.append(image)
|
||||
if args.validation_images is None:
|
||||
for _ in range(args.num_validation_images):
|
||||
with torch.autocast("cuda"):
|
||||
image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
|
||||
images.append(image)
|
||||
else:
|
||||
for image in args.validation_images:
|
||||
image = Image.open(image)
|
||||
image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
|
||||
images.append(image)
|
||||
|
||||
for tracker in accelerator.trackers:
|
||||
if tracker.name == "tensorboard":
|
||||
@@ -525,6 +533,19 @@ def parse_args(input_args=None):
|
||||
parser.add_argument(
|
||||
"--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--validation_images",
|
||||
required=False,
|
||||
default=None,
|
||||
nargs="+",
|
||||
help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--class_labels_conditioning",
|
||||
required=False,
|
||||
default=None,
|
||||
help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
|
||||
)
|
||||
|
||||
if input_args is not None:
|
||||
args = parser.parse_args(input_args)
|
||||
@@ -1169,7 +1190,7 @@ def main(args):
|
||||
)
|
||||
else:
|
||||
noise = torch.randn_like(model_input)
|
||||
bsz = model_input.shape[0]
|
||||
bsz, channels, height, width = model_input.shape
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(
|
||||
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
|
||||
@@ -1191,8 +1212,24 @@ def main(args):
|
||||
text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
|
||||
)
|
||||
|
||||
if unet.config.in_channels > channels:
|
||||
needed_additional_channels = unet.config.in_channels - channels
|
||||
additional_latents = randn_tensor(
|
||||
(bsz, needed_additional_channels, height, width),
|
||||
device=noisy_model_input.device,
|
||||
dtype=noisy_model_input.dtype,
|
||||
)
|
||||
noisy_model_input = torch.cat([additional_latents, noisy_model_input], dim=1)
|
||||
|
||||
if args.class_labels_conditioning == "timesteps":
|
||||
class_labels = timesteps
|
||||
else:
|
||||
class_labels = None
|
||||
|
||||
# Predict the noise residual
|
||||
model_pred = unet(noisy_model_input, timesteps, encoder_hidden_states).sample
|
||||
model_pred = unet(
|
||||
noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels
|
||||
).sample
|
||||
|
||||
if model_pred.shape[1] == 6:
|
||||
model_pred, _ = torch.chunk(model_pred, 2, dim=1)
|
||||
|
||||
Reference in New Issue
Block a user