mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[Community Pipeline] fix lpw_stable_diffusion (#1570)
* fix lpw_stable_diffusion * rollback preprocess_mask resample
This commit is contained in:
@@ -6,38 +6,13 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
import PIL
|
||||
from diffusers.configuration_utils import FrozenDict
|
||||
from diffusers import SchedulerMixin, StableDiffusionPipeline
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||
from diffusers.utils import deprecate, is_accelerate_available, logging
|
||||
|
||||
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
|
||||
from packaging import version
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
||||
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
|
||||
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
||||
PIL_INTERPOLATION = {
|
||||
"linear": PIL.Image.Resampling.BILINEAR,
|
||||
"bilinear": PIL.Image.Resampling.BILINEAR,
|
||||
"bicubic": PIL.Image.Resampling.BICUBIC,
|
||||
"lanczos": PIL.Image.Resampling.LANCZOS,
|
||||
"nearest": PIL.Image.Resampling.NEAREST,
|
||||
}
|
||||
else:
|
||||
PIL_INTERPOLATION = {
|
||||
"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
"nearest": PIL.Image.NEAREST,
|
||||
}
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
re_attention = re.compile(
|
||||
@@ -146,7 +121,7 @@ def parse_prompt_attention(text):
|
||||
return res
|
||||
|
||||
|
||||
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
|
||||
def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], max_length: int):
|
||||
r"""
|
||||
Tokenize a list of prompts and return its tokens with weights of each token.
|
||||
|
||||
@@ -207,7 +182,7 @@ def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_midd
|
||||
|
||||
|
||||
def get_unweighted_text_embeddings(
|
||||
pipe: DiffusionPipeline,
|
||||
pipe: StableDiffusionPipeline,
|
||||
text_input: torch.Tensor,
|
||||
chunk_length: int,
|
||||
no_boseos_middle: Optional[bool] = True,
|
||||
@@ -247,10 +222,10 @@ def get_unweighted_text_embeddings(
|
||||
|
||||
|
||||
def get_weighted_text_embeddings(
|
||||
pipe: DiffusionPipeline,
|
||||
pipe: StableDiffusionPipeline,
|
||||
prompt: Union[str, List[str]],
|
||||
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
||||
max_embeddings_multiples: Optional[int] = 1,
|
||||
max_embeddings_multiples: Optional[int] = 3,
|
||||
no_boseos_middle: Optional[bool] = False,
|
||||
skip_parsing: Optional[bool] = False,
|
||||
skip_weighting: Optional[bool] = False,
|
||||
@@ -264,14 +239,14 @@ def get_weighted_text_embeddings(
|
||||
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
||||
|
||||
Args:
|
||||
pipe (`DiffusionPipeline`):
|
||||
pipe (`StableDiffusionPipeline`):
|
||||
Pipe to provide access to the tokenizer and the text encoder.
|
||||
prompt (`str` or `List[str]`):
|
||||
The prompt or prompts to guide the image generation.
|
||||
uncond_prompt (`str` or `List[str]`):
|
||||
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
|
||||
is provided, the embeddings of prompt and uncond_prompt are concatenated.
|
||||
max_embeddings_multiples (`int`, *optional*, defaults to `1`):
|
||||
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
||||
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
||||
no_boseos_middle (`bool`, *optional*, defaults to `False`):
|
||||
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
|
||||
@@ -387,11 +362,11 @@ def preprocess_image(image):
|
||||
return 2.0 * image - 1.0
|
||||
|
||||
|
||||
def preprocess_mask(mask):
|
||||
def preprocess_mask(mask, scale_factor=8):
|
||||
mask = mask.convert("L")
|
||||
w, h = mask.size
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
mask = mask.resize((w // 8, h // 8), resample=PIL_INTERPOLATION["nearest"])
|
||||
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
|
||||
mask = np.array(mask).astype(np.float32) / 255.0
|
||||
mask = np.tile(mask, (4, 1, 1))
|
||||
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
||||
@@ -400,7 +375,7 @@ def preprocess_mask(mask):
|
||||
return mask
|
||||
|
||||
|
||||
class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
||||
weighting in prompt.
|
||||
@@ -435,50 +410,12 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
text_encoder: CLIPTextModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||
scheduler: SchedulerMixin,
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
requires_safety_checker: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
||||
deprecation_message = (
|
||||
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
||||
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
||||
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
||||
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
||||
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
||||
" file"
|
||||
)
|
||||
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
||||
new_config = dict(scheduler.config)
|
||||
new_config["steps_offset"] = 1
|
||||
scheduler._internal_dict = FrozenDict(new_config)
|
||||
|
||||
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
||||
deprecation_message = (
|
||||
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
||||
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
||||
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
||||
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
||||
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
||||
)
|
||||
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
||||
new_config = dict(scheduler.config)
|
||||
new_config["clip_sample"] = False
|
||||
scheduler._internal_dict = FrozenDict(new_config)
|
||||
|
||||
if safety_checker is None:
|
||||
logger.warning(
|
||||
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
||||
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
||||
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
||||
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
||||
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
||||
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
||||
)
|
||||
|
||||
self.register_modules(
|
||||
super().__init__(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
@@ -486,51 +423,171 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
requires_safety_checker=requires_safety_checker,
|
||||
)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
max_embeddings_multiples,
|
||||
):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
||||
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
||||
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
||||
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
||||
`attention_head_dim` must be a multiple of `slice_size`.
|
||||
prompt (`str` or `list(int)`):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `List[str]`):
|
||||
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
||||
if `guidance_scale` is less than `1`).
|
||||
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
||||
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
||||
"""
|
||||
if slice_size == "auto":
|
||||
# half the attention head size is usually a good trade-off between
|
||||
# speed and memory
|
||||
slice_size = self.unet.config.attention_head_dim // 2
|
||||
self.unet.set_attention_slice(slice_size)
|
||||
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
||||
|
||||
def disable_attention_slicing(self):
|
||||
r"""
|
||||
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
||||
back to computing attention in one step.
|
||||
"""
|
||||
# set slice_size = `None` to disable `attention slicing`
|
||||
self.enable_attention_slicing(None)
|
||||
if negative_prompt is None:
|
||||
negative_prompt = [""] * batch_size
|
||||
elif isinstance(negative_prompt, str):
|
||||
negative_prompt = [negative_prompt] * batch_size
|
||||
if batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
def enable_sequential_cpu_offload(self):
|
||||
r"""
|
||||
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
||||
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
||||
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
||||
"""
|
||||
if is_accelerate_available():
|
||||
from accelerate import cpu_offload
|
||||
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
||||
pipe=self,
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
)
|
||||
bs_embed, seq_len, _ = text_embeddings.shape
|
||||
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
||||
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
bs_embed, seq_len, _ = uncond_embeddings.shape
|
||||
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
||||
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
|
||||
return text_embeddings
|
||||
|
||||
def check_inputs(self, prompt, height, width, strength, callback_steps):
|
||||
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
|
||||
if is_text2img:
|
||||
return self.scheduler.timesteps.to(device), num_inference_steps
|
||||
else:
|
||||
raise ImportError("Please install accelerate via `pip install accelerate`")
|
||||
# get the original timestep using init_timestep
|
||||
offset = self.scheduler.config.get("steps_offset", 0)
|
||||
init_timestep = int(num_inference_steps * strength) + offset
|
||||
init_timestep = min(init_timestep, num_inference_steps)
|
||||
|
||||
device = self.device
|
||||
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start:].to(device)
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
|
||||
if cpu_offloaded_model is not None:
|
||||
cpu_offload(cpu_offloaded_model, device)
|
||||
def run_safety_checker(self, image, device, dtype):
|
||||
if self.safety_checker is not None:
|
||||
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
||||
image, has_nsfw_concept = self.safety_checker(
|
||||
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
||||
)
|
||||
else:
|
||||
has_nsfw_concept = None
|
||||
return image, has_nsfw_concept
|
||||
|
||||
def decode_latents(self, latents):
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae.decode(latents).sample
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
return image
|
||||
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, device, generator, latents=None):
|
||||
if image is None:
|
||||
shape = (
|
||||
batch_size,
|
||||
self.unet.in_channels,
|
||||
height // self.vae_scale_factor,
|
||||
width // self.vae_scale_factor,
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
if device.type == "mps":
|
||||
# randn does not work reproducibly on mps
|
||||
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
||||
else:
|
||||
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents, None, None
|
||||
else:
|
||||
init_latent_dist = self.vae.encode(image).latent_dist
|
||||
init_latents = init_latent_dist.sample(generator=generator)
|
||||
init_latents = 0.18215 * init_latents
|
||||
init_latents = torch.cat([init_latents] * batch_size, dim=0)
|
||||
init_latents_orig = init_latents
|
||||
shape = init_latents.shape
|
||||
|
||||
# add noise to latents using the timesteps
|
||||
if device.type == "mps":
|
||||
noise = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
||||
else:
|
||||
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
||||
return latents, init_latents_orig, noise
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
@@ -634,221 +691,111 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs)
|
||||
image = init_image or image
|
||||
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
prompt = [prompt]
|
||||
elif isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
# 0. Default height and width to unet
|
||||
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||||
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
# get prompt text embeddings
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(prompt, height, width, strength, callback_steps)
|
||||
|
||||
# 2. Define call parameters
|
||||
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if negative_prompt is None:
|
||||
negative_prompt = [""] * batch_size
|
||||
elif isinstance(negative_prompt, str):
|
||||
negative_prompt = [negative_prompt] * batch_size
|
||||
if batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
||||
pipe=self,
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
**kwargs,
|
||||
# 3. Encode input prompt
|
||||
text_embeddings = self._encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
max_embeddings_multiples,
|
||||
)
|
||||
bs_embed, seq_len, _ = text_embeddings.shape
|
||||
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
||||
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
dtype = text_embeddings.dtype
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
bs_embed, seq_len, _ = uncond_embeddings.shape
|
||||
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
||||
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
|
||||
# set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
latents_dtype = text_embeddings.dtype
|
||||
init_latents_orig = None
|
||||
mask = None
|
||||
noise = None
|
||||
|
||||
if image is None:
|
||||
# get the initial random noise unless the user supplied it
|
||||
|
||||
# Unlike in other pipelines, latents need to be generated in the target device
|
||||
# for 1-to-1 results reproducibility with the CompVis implementation.
|
||||
# However this currently doesn't work in `mps`.
|
||||
latents_shape = (
|
||||
batch_size * num_images_per_prompt,
|
||||
self.unet.in_channels,
|
||||
height // 8,
|
||||
width // 8,
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
if self.device.type == "mps":
|
||||
# randn does not exist on mps
|
||||
latents = torch.randn(
|
||||
latents_shape,
|
||||
generator=generator,
|
||||
device="cpu",
|
||||
dtype=latents_dtype,
|
||||
).to(self.device)
|
||||
else:
|
||||
latents = torch.randn(
|
||||
latents_shape,
|
||||
generator=generator,
|
||||
device=self.device,
|
||||
dtype=latents_dtype,
|
||||
)
|
||||
else:
|
||||
if latents.shape != latents_shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||
latents = latents.to(self.device)
|
||||
|
||||
timesteps = self.scheduler.timesteps.to(self.device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
# 4. Preprocess image and mask
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
image = preprocess_image(image)
|
||||
if image is not None:
|
||||
image = image.to(device=self.device, dtype=dtype)
|
||||
if isinstance(mask_image, PIL.Image.Image):
|
||||
mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
|
||||
if mask_image is not None:
|
||||
mask = mask_image.to(device=self.device, dtype=dtype)
|
||||
mask = torch.cat([mask] * batch_size * num_images_per_prompt)
|
||||
else:
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
image = preprocess_image(image)
|
||||
# encode the init image into latents and scale the latents
|
||||
image = image.to(device=self.device, dtype=latents_dtype)
|
||||
init_latent_dist = self.vae.encode(image).latent_dist
|
||||
init_latents = init_latent_dist.sample(generator=generator)
|
||||
init_latents = 0.18215 * init_latents
|
||||
init_latents = torch.cat([init_latents] * batch_size * num_images_per_prompt, dim=0)
|
||||
init_latents_orig = init_latents
|
||||
mask = None
|
||||
|
||||
# preprocess mask
|
||||
if mask_image is not None:
|
||||
if isinstance(mask_image, PIL.Image.Image):
|
||||
mask_image = preprocess_mask(mask_image)
|
||||
mask_image = mask_image.to(device=self.device, dtype=latents_dtype)
|
||||
mask = torch.cat([mask_image] * batch_size * num_images_per_prompt)
|
||||
# 5. set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
||||
|
||||
# check sizes
|
||||
if not mask.shape == init_latents.shape:
|
||||
raise ValueError("The mask and image should be the same size!")
|
||||
# 6. Prepare latent variables
|
||||
latents, init_latents_orig, noise = self.prepare_latents(
|
||||
image,
|
||||
latent_timestep,
|
||||
batch_size * num_images_per_prompt,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# get the original timestep using init_timestep
|
||||
offset = self.scheduler.config.get("steps_offset", 0)
|
||||
init_timestep = int(num_inference_steps * strength) + offset
|
||||
init_timestep = min(init_timestep, num_inference_steps)
|
||||
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
timesteps = self.scheduler.timesteps[-init_timestep]
|
||||
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device)
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# add noise to latents using the timesteps
|
||||
if self.device.type == "mps":
|
||||
# randn does not exist on mps
|
||||
noise = torch.randn(
|
||||
init_latents.shape,
|
||||
generator=generator,
|
||||
device="cpu",
|
||||
dtype=latents_dtype,
|
||||
).to(self.device)
|
||||
else:
|
||||
noise = torch.randn(
|
||||
init_latents.shape,
|
||||
generator=generator,
|
||||
device=self.device,
|
||||
dtype=latents_dtype,
|
||||
)
|
||||
latents = self.scheduler.add_noise(init_latents, noise, timesteps)
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start:].to(self.device)
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
if mask is not None:
|
||||
# masking
|
||||
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
||||
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if i % callback_steps == 0:
|
||||
if callback is not None:
|
||||
callback(i, t, latents)
|
||||
if is_cancelled_callback is not None and is_cancelled_callback():
|
||||
return None
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
# 9. Post-processing
|
||||
image = self.decode_latents(latents)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
if mask is not None:
|
||||
# masking
|
||||
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
||||
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
||||
|
||||
# call the callback, if provided
|
||||
if i % callback_steps == 0:
|
||||
if callback is not None:
|
||||
callback(i, t, latents)
|
||||
if is_cancelled_callback is not None and is_cancelled_callback():
|
||||
return None
|
||||
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae.decode(latents).sample
|
||||
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
if self.safety_checker is not None:
|
||||
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
||||
self.device
|
||||
)
|
||||
image, has_nsfw_concept = self.safety_checker(
|
||||
images=image,
|
||||
clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype),
|
||||
)
|
||||
else:
|
||||
has_nsfw_concept = None
|
||||
# 10. Run safety checker
|
||||
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
|
||||
|
||||
# 11. Convert to PIL
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
return image, has_nsfw_concept
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||||
|
||||
@@ -868,6 +815,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
**kwargs,
|
||||
):
|
||||
@@ -915,6 +863,9 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
is_cancelled_callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. If the function returns
|
||||
`True`, the inference will be cancelled.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
@@ -940,6 +891,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
output_type=output_type,
|
||||
return_dict=return_dict,
|
||||
callback=callback,
|
||||
is_cancelled_callback=is_cancelled_callback,
|
||||
callback_steps=callback_steps,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -959,6 +911,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
**kwargs,
|
||||
):
|
||||
@@ -1007,6 +960,9 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
is_cancelled_callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. If the function returns
|
||||
`True`, the inference will be cancelled.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
@@ -1031,6 +987,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
output_type=output_type,
|
||||
return_dict=return_dict,
|
||||
callback=callback,
|
||||
is_cancelled_callback=is_cancelled_callback,
|
||||
callback_steps=callback_steps,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -1051,6 +1008,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
**kwargs,
|
||||
):
|
||||
@@ -1103,6 +1061,9 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
is_cancelled_callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. If the function returns
|
||||
`True`, the inference will be cancelled.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
@@ -1128,6 +1089,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
output_type=output_type,
|
||||
return_dict=return_dict,
|
||||
callback=callback,
|
||||
is_cancelled_callback=is_cancelled_callback,
|
||||
callback_steps=callback_steps,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -6,35 +6,13 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
import PIL
|
||||
from diffusers.onnx_utils import OnnxRuntimeModel
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers import OnnxStableDiffusionPipeline, SchedulerMixin
|
||||
from diffusers.onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||
from diffusers.utils import deprecate, logging
|
||||
|
||||
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
|
||||
from packaging import version
|
||||
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging
|
||||
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
||||
|
||||
|
||||
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
||||
PIL_INTERPOLATION = {
|
||||
"linear": PIL.Image.Resampling.BILINEAR,
|
||||
"bilinear": PIL.Image.Resampling.BILINEAR,
|
||||
"bicubic": PIL.Image.Resampling.BICUBIC,
|
||||
"lanczos": PIL.Image.Resampling.LANCZOS,
|
||||
"nearest": PIL.Image.Resampling.NEAREST,
|
||||
}
|
||||
else:
|
||||
PIL_INTERPOLATION = {
|
||||
"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
"nearest": PIL.Image.NEAREST,
|
||||
}
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
re_attention = re.compile(
|
||||
@@ -262,7 +240,7 @@ def get_weighted_text_embeddings(
|
||||
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
||||
|
||||
Args:
|
||||
pipe (`DiffusionPipeline`):
|
||||
pipe (`OnnxStableDiffusionPipeline`):
|
||||
Pipe to provide access to the tokenizer and the text encoder.
|
||||
prompt (`str` or `List[str]`):
|
||||
The prompt or prompts to guide the image generation.
|
||||
@@ -392,11 +370,11 @@ def preprocess_image(image):
|
||||
return 2.0 * image - 1.0
|
||||
|
||||
|
||||
def preprocess_mask(mask):
|
||||
def preprocess_mask(mask, scale_factor=8):
|
||||
mask = mask.convert("L")
|
||||
w, h = mask.size
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
mask = mask.resize((w // 8, h // 8), resample=PIL_INTERPOLATION["nearest"])
|
||||
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
|
||||
mask = np.array(mask).astype(np.float32) / 255.0
|
||||
mask = np.tile(mask, (4, 1, 1))
|
||||
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
||||
@@ -404,7 +382,7 @@ def preprocess_mask(mask):
|
||||
return mask
|
||||
|
||||
|
||||
class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
||||
weighting in prompt.
|
||||
@@ -420,12 +398,12 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: OnnxRuntimeModel,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||
scheduler: SchedulerMixin,
|
||||
safety_checker: OnnxRuntimeModel,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
requires_safety_checker: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.register_modules(
|
||||
super().__init__(
|
||||
vae_encoder=vae_encoder,
|
||||
vae_decoder=vae_decoder,
|
||||
text_encoder=text_encoder,
|
||||
@@ -434,7 +412,170 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
requires_safety_checker=requires_safety_checker,
|
||||
)
|
||||
self.unet_in_channels = 4
|
||||
self.vae_scale_factor = 8
|
||||
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
max_embeddings_multiples,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `list(int)`):
|
||||
prompt to be encoded
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `List[str]`):
|
||||
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
||||
if `guidance_scale` is less than `1`).
|
||||
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
||||
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
||||
"""
|
||||
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
||||
|
||||
if negative_prompt is None:
|
||||
negative_prompt = [""] * batch_size
|
||||
elif isinstance(negative_prompt, str):
|
||||
negative_prompt = [negative_prompt] * batch_size
|
||||
if batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
||||
pipe=self,
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
)
|
||||
|
||||
text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0)
|
||||
if do_classifier_free_guidance:
|
||||
uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0)
|
||||
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
||||
|
||||
return text_embeddings
|
||||
|
||||
def check_inputs(self, prompt, height, width, strength, callback_steps):
|
||||
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
def get_timesteps(self, num_inference_steps, strength, is_text2img):
|
||||
if is_text2img:
|
||||
return self.scheduler.timesteps, num_inference_steps
|
||||
else:
|
||||
# get the original timestep using init_timestep
|
||||
offset = self.scheduler.config.get("steps_offset", 0)
|
||||
init_timestep = int(num_inference_steps * strength) + offset
|
||||
init_timestep = min(init_timestep, num_inference_steps)
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start:]
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
def run_safety_checker(self, image):
|
||||
if self.safety_checker is not None:
|
||||
safety_checker_input = self.feature_extractor(
|
||||
self.numpy_to_pil(image), return_tensors="np"
|
||||
).pixel_values.astype(image.dtype)
|
||||
# There will throw an error if use safety_checker directly and batchsize>1
|
||||
images, has_nsfw_concept = [], []
|
||||
for i in range(image.shape[0]):
|
||||
image_i, has_nsfw_concept_i = self.safety_checker(
|
||||
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
|
||||
)
|
||||
images.append(image_i)
|
||||
has_nsfw_concept.append(has_nsfw_concept_i[0])
|
||||
image = np.concatenate(images)
|
||||
else:
|
||||
has_nsfw_concept = None
|
||||
return image, has_nsfw_concept
|
||||
|
||||
def decode_latents(self, latents):
|
||||
latents = 1 / 0.18215 * latents
|
||||
# image = self.vae_decoder(latent_sample=latents)[0]
|
||||
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
|
||||
image = np.concatenate(
|
||||
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
|
||||
)
|
||||
image = np.clip(image / 2 + 0.5, 0, 1)
|
||||
image = image.transpose((0, 2, 3, 1))
|
||||
return image
|
||||
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, generator, latents=None):
|
||||
if image is None:
|
||||
shape = (
|
||||
batch_size,
|
||||
self.unet_in_channels,
|
||||
height // self.vae_scale_factor,
|
||||
width // self.vae_scale_factor,
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = (torch.from_numpy(latents) * self.scheduler.init_noise_sigma).numpy()
|
||||
return latents, None, None
|
||||
else:
|
||||
init_latents = self.vae_encoder(sample=image)[0]
|
||||
init_latents = 0.18215 * init_latents
|
||||
init_latents = np.concatenate([init_latents] * batch_size, axis=0)
|
||||
init_latents_orig = init_latents
|
||||
shape = init_latents.shape
|
||||
|
||||
# add noise to latents using the timesteps
|
||||
noise = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype)
|
||||
latents = self.scheduler.add_noise(
|
||||
torch.from_numpy(init_latents), torch.from_numpy(noise), timestep
|
||||
).numpy()
|
||||
return latents, init_latents_orig, noise
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
@@ -450,7 +591,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
strength: float = 0.8,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[np.random.RandomState] = None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
latents: Optional[np.ndarray] = None,
|
||||
max_embeddings_multiples: Optional[int] = 3,
|
||||
output_type: Optional[str] = "pil",
|
||||
@@ -501,8 +642,9 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`np.random.RandomState`, *optional*):
|
||||
A np.random.RandomState to make generation deterministic.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
||||
deterministic.
|
||||
latents (`np.ndarray`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
@@ -537,204 +679,123 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs)
|
||||
image = init_image or image
|
||||
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
prompt = [prompt]
|
||||
elif isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
# 0. Default height and width to unet
|
||||
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||||
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
# get prompt text embeddings
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(prompt, height, width, strength, callback_steps)
|
||||
|
||||
# 2. Define call parameters
|
||||
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if negative_prompt is None:
|
||||
negative_prompt = [""] * batch_size
|
||||
elif isinstance(negative_prompt, str):
|
||||
negative_prompt = [negative_prompt] * batch_size
|
||||
if batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
if generator is None:
|
||||
generator = np.random
|
||||
# 3. Encode input prompt
|
||||
text_embeddings = self._encode_prompt(
|
||||
prompt,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
max_embeddings_multiples,
|
||||
)
|
||||
dtype = text_embeddings.dtype
|
||||
|
||||
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
||||
pipe=self,
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
**kwargs,
|
||||
# 4. Preprocess image and mask
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
image = preprocess_image(image)
|
||||
if image is not None:
|
||||
image = image.astype(dtype)
|
||||
if isinstance(mask_image, PIL.Image.Image):
|
||||
mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
|
||||
if mask_image is not None:
|
||||
mask = mask_image.astype(dtype)
|
||||
mask = np.concatenate([mask] * batch_size * num_images_per_prompt)
|
||||
else:
|
||||
mask = None
|
||||
|
||||
# 5. set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
timestep_dtype = next(
|
||||
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
|
||||
)
|
||||
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, image is None)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
||||
|
||||
# 6. Prepare latent variables
|
||||
latents, init_latents_orig, noise = self.prepare_latents(
|
||||
image,
|
||||
latent_timestep,
|
||||
batch_size * num_images_per_prompt,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0)
|
||||
if do_classifier_free_guidance:
|
||||
uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0)
|
||||
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
||||
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# set timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
|
||||
latent_model_input = latent_model_input.numpy()
|
||||
|
||||
latents_dtype = text_embeddings.dtype
|
||||
init_latents_orig = None
|
||||
mask = None
|
||||
noise = None
|
||||
|
||||
if image is None:
|
||||
latents_shape = (
|
||||
batch_size * num_images_per_prompt,
|
||||
4,
|
||||
height // 8,
|
||||
width // 8,
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = generator.randn(*latents_shape).astype(latents_dtype)
|
||||
elif latents.shape != latents_shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||
|
||||
timesteps = self.scheduler.timesteps.to(self.device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
else:
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
image = preprocess_image(image)
|
||||
# encode the init image into latents and scale the latents
|
||||
image = image.astype(latents_dtype)
|
||||
init_latents = self.vae_encoder(sample=image)[0]
|
||||
init_latents = 0.18215 * init_latents
|
||||
init_latents = np.concatenate([init_latents] * batch_size * num_images_per_prompt)
|
||||
init_latents_orig = init_latents
|
||||
|
||||
# preprocess mask
|
||||
if mask_image is not None:
|
||||
if isinstance(mask_image, PIL.Image.Image):
|
||||
mask_image = preprocess_mask(mask_image)
|
||||
mask_image = mask_image.astype(latents_dtype)
|
||||
mask = np.concatenate([mask_image] * batch_size * num_images_per_prompt)
|
||||
|
||||
# check sizes
|
||||
if not mask.shape == init_latents.shape:
|
||||
print(mask.shape, init_latents.shape)
|
||||
raise ValueError("The mask and image should be the same size!")
|
||||
|
||||
# get the original timestep using init_timestep
|
||||
offset = self.scheduler.config.get("steps_offset", 0)
|
||||
init_timestep = int(num_inference_steps * strength) + offset
|
||||
init_timestep = min(init_timestep, num_inference_steps)
|
||||
|
||||
timesteps = self.scheduler.timesteps[-init_timestep]
|
||||
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt)
|
||||
|
||||
# add noise to latents using the timesteps
|
||||
noise = generator.randn(*init_latents.shape).astype(latents_dtype)
|
||||
latents = self.scheduler.add_noise(
|
||||
torch.from_numpy(init_latents), torch.from_numpy(noise), timesteps
|
||||
).numpy()
|
||||
|
||||
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
||||
timesteps = self.scheduler.timesteps[t_start:]
|
||||
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
sample=latent_model_input,
|
||||
timestep=np.array([t]),
|
||||
encoder_hidden_states=text_embeddings,
|
||||
)
|
||||
noise_pred = noise_pred[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample.numpy()
|
||||
|
||||
if mask is not None:
|
||||
# masking
|
||||
init_latents_proper = self.scheduler.add_noise(
|
||||
torch.from_numpy(init_latents_orig),
|
||||
torch.from_numpy(noise),
|
||||
torch.tensor([t]),
|
||||
).numpy()
|
||||
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
||||
|
||||
# call the callback, if provided
|
||||
if i % callback_steps == 0:
|
||||
if callback is not None:
|
||||
callback(i, t, latents)
|
||||
if is_cancelled_callback is not None and is_cancelled_callback():
|
||||
return None
|
||||
|
||||
latents = 1 / 0.18215 * latents
|
||||
# image = self.vae_decoder(latent_sample=latents)[0]
|
||||
# it seems likes there is a problem for using half-precision vae decoder if batchsize>1
|
||||
image = []
|
||||
for i in range(latents.shape[0]):
|
||||
image.append(self.vae_decoder(latent_sample=latents[i : i + 1])[0])
|
||||
image = np.concatenate(image)
|
||||
|
||||
image = np.clip(image / 2 + 0.5, 0, 1)
|
||||
image = image.transpose((0, 2, 3, 1))
|
||||
|
||||
if self.safety_checker is not None:
|
||||
safety_checker_input = self.feature_extractor(
|
||||
self.numpy_to_pil(image), return_tensors="np"
|
||||
).pixel_values.astype(image.dtype)
|
||||
# There will throw an error if use safety_checker directly and batchsize>1
|
||||
images, has_nsfw_concept = [], []
|
||||
for i in range(image.shape[0]):
|
||||
image_i, has_nsfw_concept_i = self.safety_checker(
|
||||
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
sample=latent_model_input,
|
||||
timestep=np.array([t], dtype=timestep_dtype),
|
||||
encoder_hidden_states=text_embeddings,
|
||||
)
|
||||
images.append(image_i)
|
||||
has_nsfw_concept.append(has_nsfw_concept_i[0])
|
||||
image = np.concatenate(images)
|
||||
else:
|
||||
has_nsfw_concept = None
|
||||
noise_pred = noise_pred[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
scheduler_output = self.scheduler.step(
|
||||
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
|
||||
)
|
||||
latents = scheduler_output.prev_sample.numpy()
|
||||
|
||||
if mask is not None:
|
||||
# masking
|
||||
init_latents_proper = self.scheduler.add_noise(
|
||||
torch.from_numpy(init_latents_orig),
|
||||
torch.from_numpy(noise),
|
||||
t,
|
||||
).numpy()
|
||||
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if i % callback_steps == 0:
|
||||
if callback is not None:
|
||||
callback(i, t, latents)
|
||||
if is_cancelled_callback is not None and is_cancelled_callback():
|
||||
return None
|
||||
# 9. Post-processing
|
||||
image = self.decode_latents(latents)
|
||||
|
||||
# 10. Run safety checker
|
||||
image, has_nsfw_concept = self.run_safety_checker(image)
|
||||
|
||||
# 11. Convert to PIL
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
return image, has_nsfw_concept
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||||
|
||||
@@ -748,7 +809,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
guidance_scale: float = 7.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[np.random.RandomState] = None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
latents: Optional[np.ndarray] = None,
|
||||
max_embeddings_multiples: Optional[int] = 3,
|
||||
output_type: Optional[str] = "pil",
|
||||
@@ -783,8 +844,9 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`np.random.RandomState`, *optional*):
|
||||
A np.random.RandomState to make generation deterministic.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
||||
deterministic.
|
||||
latents (`np.ndarray`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
@@ -839,7 +901,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
guidance_scale: Optional[float] = 7.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: Optional[float] = 0.0,
|
||||
generator: Optional[np.random.RandomState] = None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
max_embeddings_multiples: Optional[int] = 3,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
@@ -878,8 +940,9 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`np.random.RandomState`, *optional*):
|
||||
A np.random.RandomState to make generation deterministic.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
||||
deterministic.
|
||||
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
||||
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
@@ -930,7 +993,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
guidance_scale: Optional[float] = 7.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: Optional[float] = 0.0,
|
||||
generator: Optional[np.random.RandomState] = None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
max_embeddings_multiples: Optional[int] = 3,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
@@ -973,8 +1036,9 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`np.random.RandomState`, *optional*):
|
||||
A np.random.RandomState to make generation deterministic.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
||||
deterministic.
|
||||
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
||||
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
|
||||
Reference in New Issue
Block a user