1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

update conversion script for SANA-1.5 and SANA-Sprint (#11082)

* 1. update conversion script for sana1.5;
2. add conversion script for sana-sprint;

* seperate sana and sana-sprint conversion scripts;

* update for upstream

* fix the } bug

* add a doc for SanaSprintPipeline;

* minor update;

* make style && make quality
This commit is contained in:
Junsong Chen
2025-03-20 16:25:46 +08:00
committed by GitHub
parent 398ca0c938
commit 4e5a9efdc2
2 changed files with 155 additions and 16 deletions

View File

@@ -0,0 +1,96 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# SanaSprintPipeline
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation](https://huggingface.co/papers/2503.09641) from NVIDIA and MIT HAN Lab, by Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Enze Xie, Song Han
The abstract from the paper is:
*This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [lawrence-cj](https://github.com/lawrence-cj), [shuchen Xue](https://github.com/scxue) and [Enze Xie](https://github.com/xieenze). The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://huggingface.co/Efficient-Large-Model/).
Available models:
| Model | Recommended dtype |
|:-------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------:|
| [`Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers) | `torch.bfloat16` |
| [`Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers) | `torch.bfloat16` |
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76) collection for more information.
Note: The recommended dtype mentioned is for the transformer weights. The text encoder must stay in `torch.bfloat16` and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaSprintPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaTransformer2DModel, SanaSprintPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = AutoModel.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SanaTransformer2DModel.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
pipeline = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.bfloat16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("sana.png")
```
## SanaSprintPipeline
[[autodoc]] SanaSprintPipeline
- all
- __call__
## SanaPipelineOutput
[[autodoc]] pipelines.sana.pipeline_output.SanaPipelineOutput

View File

@@ -27,6 +27,7 @@ from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
ckpt_ids = [
"Efficient-Large-Model/SANA1.5_4.8B_1024px/checkpoints/SANA1.5_4.8B_1024px.pth",
"Efficient-Large-Model/Sana_1600M_4Kpx_BF16/checkpoints/Sana_1600M_4Kpx_BF16.pth",
"Efficient-Large-Model/Sana_1600M_2Kpx_BF16/checkpoints/Sana_1600M_2Kpx_BF16.pth",
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing/checkpoints/Sana_1600M_1024px_MultiLing.pth",
@@ -75,7 +76,8 @@ def main(args):
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
# Handle different time embedding structure based on model type
if args.model_type == "SanaSprint_1600M_P1_D20":
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
# For Sana Sprint, the time embedding structure is different
converted_state_dict["time_embed.timestep_embedder.linear_1.weight"] = state_dict.pop(
"t_embedder.mlp.0.weight"
@@ -128,10 +130,18 @@ def main(args):
layer_num = 20
elif args.model_type == "SanaMS_600M_P1_D28":
layer_num = 28
elif args.model_type == "SanaMS_4800M_P1_D60":
layer_num = 60
else:
raise ValueError(f"{args.model_type} is not supported.")
# Positional embedding interpolation scale.
interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0}
qk_norm = "rms_norm_across_heads" if args.model_type in [
"SanaMS1.5_1600M_P1_D20",
"SanaMS1.5_4800M_P1_D60",
"SanaSprint_600M_P1_D28",
"SanaSprint_1600M_P1_D20"
] else None
for depth in range(layer_num):
# Transformer blocks.
@@ -145,6 +155,14 @@ def main(args):
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
if qk_norm is not None:
# Add Q/K normalization for self-attention (attn1) - needed for Sana-Sprint and Sana-1.5
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_q.weight"] = state_dict.pop(
f"blocks.{depth}.attn.q_norm.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_k.weight"] = state_dict.pop(
f"blocks.{depth}.attn.k_norm.weight"
)
# Projection.
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
f"blocks.{depth}.attn.proj.weight"
@@ -191,6 +209,14 @@ def main(args):
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
if qk_norm is not None:
# Add Q/K normalization for cross-attention (attn2) - needed for Sana-Sprint and Sana-1.5
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_q.weight"] = state_dict.pop(
f"blocks.{depth}.cross_attn.q_norm.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_k.weight"] = state_dict.pop(
f"blocks.{depth}.cross_attn.k_norm.weight"
)
# Add Q/K normalization for cross-attention (attn2) - needed for Sana Sprint
if args.model_type == "SanaSprint_1600M_P1_D20":
@@ -235,8 +261,7 @@ def main(args):
}
# Add qk_norm parameter for Sana Sprint
if args.model_type == "SanaSprint_1600M_P1_D20":
transformer_kwargs["qk_norm"] = "rms_norm_across_heads"
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
transformer_kwargs["guidance_embeds"] = True
transformer = SanaTransformer2DModel(**transformer_kwargs)
@@ -271,15 +296,15 @@ def main(args):
)
)
transformer.save_pretrained(
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB", variant=variant
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB"
)
else:
print(colored(f"Saving the whole Pipeline containing {args.model_type}", "green", attrs=["bold"]))
# VAE
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers", torch_dtype=torch.float32)
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers", torch_dtype=torch.float32)
# Text Encoder
text_encoder_model_path = "google/gemma-2-2b-it"
text_encoder_model_path = "Efficient-Large-Model/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path)
tokenizer.padding_side = "right"
text_encoder = AutoModelForCausalLM.from_pretrained(
@@ -287,7 +312,8 @@ def main(args):
).get_decoder()
# Choose the appropriate pipeline and scheduler based on model type
if args.model_type == "SanaSprint_1600M_P1_D20":
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
# Force SCM Scheduler for Sana Sprint regardless of scheduler_type
if args.scheduler_type != "scm":
print(
@@ -335,7 +361,7 @@ def main(args):
scheduler=scheduler,
)
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB", variant=variant)
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB")
DTYPE_MAPPING = {
@@ -344,12 +370,6 @@ DTYPE_MAPPING = {
"bf16": torch.bfloat16,
}
VARIANT_MAPPING = {
"fp32": None,
"fp16": "fp16",
"bf16": "bf16",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
@@ -369,7 +389,7 @@ if __name__ == "__main__":
"--model_type",
default="SanaMS_1600M_P1_D20",
type=str,
choices=["SanaMS_1600M_P1_D20", "SanaMS_600M_P1_D28", "SanaSprint_1600M_P1_D20"],
choices=["SanaMS_1600M_P1_D20", "SanaMS_600M_P1_D28", "SanaMS_4800M_P1_D60", "SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"],
)
parser.add_argument(
"--scheduler_type",
@@ -400,6 +420,30 @@ if __name__ == "__main__":
"cross_attention_head_dim": 72,
"cross_attention_dim": 1152,
"num_layers": 28,
},
"SanaMS1.5_1600M_P1_D20": {
"num_attention_heads": 70,
"attention_head_dim": 32,
"num_cross_attention_heads": 20,
"cross_attention_head_dim": 112,
"cross_attention_dim": 2240,
"num_layers": 20,
},
"SanaMS1.5__4800M_P1_D60": {
"num_attention_heads": 70,
"attention_head_dim": 32,
"num_cross_attention_heads": 20,
"cross_attention_head_dim": 112,
"cross_attention_dim": 2240,
"num_layers": 60,
},
"SanaSprint_600M_P1_D28": {
"num_attention_heads": 36,
"attention_head_dim": 32,
"num_cross_attention_heads": 16,
"cross_attention_head_dim": 72,
"cross_attention_dim": 1152,
"num_layers": 28,
},
"SanaSprint_1600M_P1_D20": {
"num_attention_heads": 70,
@@ -413,6 +457,5 @@ if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = DTYPE_MAPPING[args.dtype]
variant = VARIANT_MAPPING[args.dtype]
main(args)