mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
merge
This commit is contained in:
201
examples/experimental/train_glide_text_to_image.py
Normal file
201
examples/experimental/train_glide_text_to_image.py
Normal file
@@ -0,0 +1,201 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import bitsandbytes as bnb
|
||||
import PIL.Image
|
||||
from accelerate import Accelerator
|
||||
from datasets import load_dataset
|
||||
from diffusers import DDPMScheduler, Glide, GlideUNetModel
|
||||
from diffusers.hub_utils import init_git_repo, push_to_hub
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.utils import logging
|
||||
from torchvision.transforms import (
|
||||
CenterCrop,
|
||||
Compose,
|
||||
InterpolationMode,
|
||||
Normalize,
|
||||
RandomHorizontalFlip,
|
||||
Resize,
|
||||
ToTensor,
|
||||
)
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def main(args):
|
||||
accelerator = Accelerator(mixed_precision=args.mixed_precision)
|
||||
|
||||
pipeline = Glide.from_pretrained("fusing/glide-base")
|
||||
model = pipeline.text_unet
|
||||
noise_scheduler = DDPMScheduler(timesteps=1000, tensor_format="pt")
|
||||
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=args.lr)
|
||||
|
||||
augmentations = Compose(
|
||||
[
|
||||
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
|
||||
CenterCrop(args.resolution),
|
||||
RandomHorizontalFlip(),
|
||||
ToTensor(),
|
||||
Normalize([0.5], [0.5]),
|
||||
]
|
||||
)
|
||||
dataset = load_dataset(args.dataset, split="train")
|
||||
|
||||
text_encoder = pipeline.text_encoder.eval()
|
||||
|
||||
def transforms(examples):
|
||||
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
|
||||
text_inputs = pipeline.tokenizer(examples["caption"], padding="max_length", max_length=77, return_tensors="pt")
|
||||
text_inputs = text_inputs.input_ids.to(accelerator.device)
|
||||
with torch.no_grad():
|
||||
text_embeddings = accelerator.unwrap_model(text_encoder)(text_inputs).last_hidden_state
|
||||
return {"images": images, "text_embeddings": text_embeddings}
|
||||
|
||||
dataset.set_transform(transforms)
|
||||
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
"linear",
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=args.warmup_steps,
|
||||
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
|
||||
)
|
||||
|
||||
model, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
model, text_encoder, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
|
||||
if args.push_to_hub:
|
||||
repo = init_git_repo(args, at_init=True)
|
||||
|
||||
# Train!
|
||||
is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized()
|
||||
world_size = torch.distributed.get_world_size() if is_distributed else 1
|
||||
total_train_batch_size = args.batch_size * args.gradient_accumulation_steps * world_size
|
||||
max_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_epochs
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
|
||||
logger.info(f" Num Epochs = {args.num_epochs}")
|
||||
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
|
||||
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
|
||||
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
||||
logger.info(f" Total optimization steps = {max_steps}")
|
||||
|
||||
for epoch in range(args.num_epochs):
|
||||
model.train()
|
||||
with tqdm(total=len(train_dataloader), unit="ba") as pbar:
|
||||
pbar.set_description(f"Epoch {epoch}")
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
clean_images = batch["images"]
|
||||
batch_size, n_channels, height, width = clean_images.shape
|
||||
noise_samples = torch.randn(clean_images.shape).to(clean_images.device)
|
||||
timesteps = torch.randint(
|
||||
0, noise_scheduler.timesteps, (batch_size,), device=clean_images.device
|
||||
).long()
|
||||
|
||||
# add noise onto the clean images according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_images = noise_scheduler.training_step(clean_images, noise_samples, timesteps)
|
||||
|
||||
if step % args.gradient_accumulation_steps != 0:
|
||||
with accelerator.no_sync(model):
|
||||
model_output = model(noisy_images, timesteps, batch["text_embeddings"])
|
||||
model_output, model_var_values = torch.split(model_output, n_channels, dim=1)
|
||||
# Learn the variance using the variational bound, but don't let
|
||||
# it affect our mean prediction.
|
||||
frozen_out = torch.cat([model_output.detach(), model_var_values], dim=1)
|
||||
|
||||
# predict the noise residual
|
||||
loss = F.mse_loss(model_output, noise_samples)
|
||||
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
else:
|
||||
model_output = model(noisy_images, timesteps, batch["text_embeddings"])
|
||||
model_output, model_var_values = torch.split(model_output, n_channels, dim=1)
|
||||
# Learn the variance using the variational bound, but don't let
|
||||
# it affect our mean prediction.
|
||||
frozen_out = torch.cat([model_output.detach(), model_var_values], dim=1)
|
||||
|
||||
# predict the noise residual
|
||||
loss = F.mse_loss(model_output, noise_samples)
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
accelerator.backward(loss)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
pbar.update(1)
|
||||
pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
# Generate a sample image for visual inspection
|
||||
if accelerator.is_main_process:
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
pipeline.unet = accelerator.unwrap_model(model)
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
# run pipeline in inference (sample random noise and denoise)
|
||||
image = pipeline("a clip art of a corgi", generator=generator, num_upscale_inference_steps=50)
|
||||
|
||||
# process image to PIL
|
||||
image_processed = image.squeeze(0)
|
||||
image_processed = ((image_processed + 1) * 127.5).round().clamp(0, 255).to(torch.uint8).cpu().numpy()
|
||||
image_pil = PIL.Image.fromarray(image_processed)
|
||||
|
||||
# save image
|
||||
test_dir = os.path.join(args.output_dir, "test_samples")
|
||||
os.makedirs(test_dir, exist_ok=True)
|
||||
image_pil.save(f"{test_dir}/{epoch:04d}.png")
|
||||
|
||||
# save the model
|
||||
if args.push_to_hub:
|
||||
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
|
||||
else:
|
||||
pipeline.save_pretrained(args.output_dir)
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
||||
parser.add_argument("--local_rank", type=int, default=-1)
|
||||
parser.add_argument("--dataset", type=str, default="fusing/dog_captions")
|
||||
parser.add_argument("--output_dir", type=str, default="glide-text2image")
|
||||
parser.add_argument("--overwrite_output_dir", action="store_true")
|
||||
parser.add_argument("--resolution", type=int, default=64)
|
||||
parser.add_argument("--batch_size", type=int, default=4)
|
||||
parser.add_argument("--num_epochs", type=int, default=100)
|
||||
parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
|
||||
parser.add_argument("--lr", type=float, default=1e-4)
|
||||
parser.add_argument("--warmup_steps", type=int, default=500)
|
||||
parser.add_argument("--push_to_hub", action="store_true")
|
||||
parser.add_argument("--hub_token", type=str, default=None)
|
||||
parser.add_argument("--hub_model_id", type=str, default=None)
|
||||
parser.add_argument("--hub_private_repo", action="store_true")
|
||||
parser.add_argument(
|
||||
"--mixed_precision",
|
||||
type=str,
|
||||
default="no",
|
||||
choices=["no", "fp16", "bf16"],
|
||||
help=(
|
||||
"Whether to use mixed precision. Choose"
|
||||
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
||||
"and an Nvidia Ampere GPU."
|
||||
),
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
||||
args.local_rank = env_local_rank
|
||||
|
||||
main(args)
|
||||
@@ -4,19 +4,19 @@ import os
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import bitsandbytes as bnb
|
||||
import PIL.Image
|
||||
from accelerate import Accelerator
|
||||
from datasets import load_dataset
|
||||
from diffusers import DDPM, DDPMScheduler, UNetLDMModel
|
||||
from diffusers import DDPMScheduler, LatentDiffusion, UNetLDMModel
|
||||
from diffusers.hub_utils import init_git_repo, push_to_hub
|
||||
from diffusers.modeling_utils import unwrap_model
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.utils import logging
|
||||
from torchvision.transforms import (
|
||||
CenterCrop,
|
||||
Compose,
|
||||
InterpolationMode,
|
||||
Lambda,
|
||||
Normalize,
|
||||
RandomHorizontalFlip,
|
||||
Resize,
|
||||
ToTensor,
|
||||
@@ -30,6 +30,8 @@ logger = logging.get_logger(__name__)
|
||||
def main(args):
|
||||
accelerator = Accelerator(mixed_precision=args.mixed_precision)
|
||||
|
||||
pipeline = LatentDiffusion.from_pretrained("fusing/latent-diffusion-text2im-large")
|
||||
pipeline.unet = None # this model will be trained from scratch now
|
||||
model = UNetLDMModel(
|
||||
attention_resolutions=[4, 2, 1],
|
||||
channel_mult=[1, 2, 4, 4],
|
||||
@@ -37,7 +39,7 @@ def main(args):
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
dropout=0,
|
||||
image_size=32,
|
||||
image_size=8,
|
||||
in_channels=4,
|
||||
model_channels=320,
|
||||
num_heads=8,
|
||||
@@ -51,7 +53,7 @@ def main(args):
|
||||
legacy=False,
|
||||
)
|
||||
noise_scheduler = DDPMScheduler(timesteps=1000, tensor_format="pt")
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
|
||||
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=args.lr)
|
||||
|
||||
augmentations = Compose(
|
||||
[
|
||||
@@ -59,14 +61,22 @@ def main(args):
|
||||
CenterCrop(args.resolution),
|
||||
RandomHorizontalFlip(),
|
||||
ToTensor(),
|
||||
Lambda(lambda x: x * 2 - 1),
|
||||
Normalize([0.5], [0.5]),
|
||||
]
|
||||
)
|
||||
dataset = load_dataset(args.dataset, split="train")
|
||||
|
||||
text_encoder = pipeline.bert.eval()
|
||||
vqvae = pipeline.vqvae.eval()
|
||||
|
||||
def transforms(examples):
|
||||
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
|
||||
return {"input": images}
|
||||
text_inputs = pipeline.tokenizer(examples["caption"], padding="max_length", max_length=77, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
text_embeddings = accelerator.unwrap_model(text_encoder)(text_inputs.input_ids.cpu()).last_hidden_state
|
||||
images = 1 / 0.18215 * torch.stack(images, dim=0)
|
||||
latents = accelerator.unwrap_model(vqvae).encode(images.cpu()).mode()
|
||||
return {"images": images, "text_embeddings": text_embeddings, "latents": latents}
|
||||
|
||||
dataset.set_transform(transforms)
|
||||
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
|
||||
@@ -78,9 +88,11 @@ def main(args):
|
||||
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
|
||||
)
|
||||
|
||||
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
model, optimizer, train_dataloader, lr_scheduler
|
||||
model, text_encoder, vqvae, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
model, text_encoder, vqvae, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
text_encoder = text_encoder.cpu()
|
||||
vqvae = vqvae.cpu()
|
||||
|
||||
if args.push_to_hub:
|
||||
repo = init_git_repo(args, at_init=True)
|
||||
@@ -98,29 +110,31 @@ def main(args):
|
||||
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
||||
logger.info(f" Total optimization steps = {max_steps}")
|
||||
|
||||
global_step = 0
|
||||
for epoch in range(args.num_epochs):
|
||||
model.train()
|
||||
with tqdm(total=len(train_dataloader), unit="ba") as pbar:
|
||||
pbar.set_description(f"Epoch {epoch}")
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
clean_images = batch["input"]
|
||||
noise_samples = torch.randn(clean_images.shape).to(clean_images.device)
|
||||
bsz = clean_images.shape[0]
|
||||
timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long()
|
||||
clean_latents = batch["latents"]
|
||||
noise_samples = torch.randn(clean_latents.shape).to(clean_latents.device)
|
||||
bsz = clean_latents.shape[0]
|
||||
timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_latents.device).long()
|
||||
|
||||
# add noise onto the clean images according to the noise magnitude at each timestep
|
||||
# add noise onto the clean latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_images = noise_scheduler.training_step(clean_images, noise_samples, timesteps)
|
||||
noisy_latents = noise_scheduler.training_step(clean_latents, noise_samples, timesteps)
|
||||
|
||||
if step % args.gradient_accumulation_steps != 0:
|
||||
with accelerator.no_sync(model):
|
||||
output = model(noisy_images, timesteps)
|
||||
output = model(noisy_latents, timesteps, context=batch["text_embeddings"])
|
||||
# predict the noise residual
|
||||
loss = F.mse_loss(output, noise_samples)
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
else:
|
||||
output = model(noisy_images, timesteps)
|
||||
output = model(noisy_latents, timesteps, context=batch["text_embeddings"])
|
||||
# predict the noise residual
|
||||
loss = F.mse_loss(output, noise_samples)
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
@@ -131,24 +145,25 @@ def main(args):
|
||||
optimizer.zero_grad()
|
||||
pbar.update(1)
|
||||
pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])
|
||||
global_step += 1
|
||||
|
||||
optimizer.step()
|
||||
if is_distributed:
|
||||
torch.distributed.barrier()
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
# Generate a sample image for visual inspection
|
||||
if args.local_rank in [-1, 0]:
|
||||
if accelerator.is_main_process:
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
pipeline = DDPM(unet=unwrap_model(model), noise_scheduler=noise_scheduler)
|
||||
pipeline.unet = accelerator.unwrap_model(model)
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
# run pipeline in inference (sample random noise and denoise)
|
||||
image = pipeline(generator=generator)
|
||||
image = pipeline(
|
||||
["a clip art of a corgi"], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50
|
||||
)
|
||||
|
||||
# process image to PIL
|
||||
image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
image_processed = (image_processed + 1.0) * 127.5
|
||||
image_processed = image_processed * 255.0
|
||||
image_processed = image_processed.type(torch.uint8).numpy()
|
||||
image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
|
||||
@@ -162,20 +177,19 @@ def main(args):
|
||||
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
|
||||
else:
|
||||
pipeline.save_pretrained(args.output_dir)
|
||||
if is_distributed:
|
||||
torch.distributed.barrier()
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
||||
parser.add_argument("--local_rank", type=int, default=-1)
|
||||
parser.add_argument("--dataset", type=str, default="huggan/flowers-102-categories")
|
||||
parser.add_argument("--output_dir", type=str, default="ddpm-model")
|
||||
parser.add_argument("--dataset", type=str, default="fusing/dog_captions")
|
||||
parser.add_argument("--output_dir", type=str, default="ldm-text2image")
|
||||
parser.add_argument("--overwrite_output_dir", action="store_true")
|
||||
parser.add_argument("--resolution", type=int, default=64)
|
||||
parser.add_argument("--batch_size", type=int, default=16)
|
||||
parser.add_argument("--resolution", type=int, default=128)
|
||||
parser.add_argument("--batch_size", type=int, default=1)
|
||||
parser.add_argument("--num_epochs", type=int, default=100)
|
||||
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
||||
parser.add_argument("--gradient_accumulation_steps", type=int, default=16)
|
||||
parser.add_argument("--lr", type=float, default=1e-4)
|
||||
parser.add_argument("--warmup_steps", type=int, default=500)
|
||||
parser.add_argument("--push_to_hub", action="store_true")
|
||||
|
||||
@@ -7,7 +7,7 @@ import torch.nn.functional as F
|
||||
import PIL.Image
|
||||
from accelerate import Accelerator
|
||||
from datasets import load_dataset
|
||||
from diffusers import DDPM, DDPMScheduler, UNetModel
|
||||
from diffusers import DDPMPipeline, DDPMScheduler, UNetModel
|
||||
from diffusers.hub_utils import init_git_repo, push_to_hub
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.training_utils import EMAModel
|
||||
@@ -71,7 +71,7 @@ def main(args):
|
||||
model, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
|
||||
ema_model = EMAModel(model, inv_gamma=1.0, power=3 / 4)
|
||||
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
|
||||
|
||||
if args.push_to_hub:
|
||||
repo = init_git_repo(args, at_init=True)
|
||||
@@ -133,7 +133,7 @@ def main(args):
|
||||
# Generate a sample image for visual inspection
|
||||
if accelerator.is_main_process:
|
||||
with torch.no_grad():
|
||||
pipeline = DDPM(
|
||||
pipeline = DDPMPipeline(
|
||||
unet=accelerator.unwrap_model(ema_model.averaged_model), noise_scheduler=noise_scheduler
|
||||
)
|
||||
|
||||
@@ -172,6 +172,9 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
||||
parser.add_argument("--lr", type=float, default=1e-4)
|
||||
parser.add_argument("--warmup_steps", type=int, default=500)
|
||||
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
|
||||
parser.add_argument("--ema_power", type=float, default=3/4)
|
||||
parser.add_argument("--ema_max_decay", type=float, default=0.999)
|
||||
parser.add_argument("--push_to_hub", action="store_true")
|
||||
parser.add_argument("--hub_token", type=str, default=None)
|
||||
parser.add_argument("--hub_model_id", type=str, default=None)
|
||||
|
||||
@@ -64,7 +64,7 @@ class Upsample(nn.Module):
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, use_conv_transpose=False, dims=2, out_channels=None):
|
||||
def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@@ -73,7 +73,7 @@ class Upsample(nn.Module):
|
||||
self.use_conv_transpose = use_conv_transpose
|
||||
|
||||
if use_conv_transpose:
|
||||
self.conv = conv_transpose_nd(dims, channels, out_channels, 4, 2, 1)
|
||||
self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
|
||||
elif use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
|
||||
@@ -207,6 +207,7 @@ class GradTTSUpsample(torch.nn.Module):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
# TODO (patil-suraj): needs test
|
||||
class Upsample1d(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
|
||||
@@ -31,6 +31,7 @@ from tqdm import tqdm
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Upsample
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
@@ -42,20 +43,6 @@ def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
@@ -259,7 +246,7 @@ class UNetModel(ModelMixin, ConfigMixin):
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
up.upsample = Upsample(block_in, use_conv=resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@ import torch.nn.functional as F
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Upsample
|
||||
|
||||
|
||||
def convert_module_to_f16(l):
|
||||
@@ -125,36 +126,6 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
@@ -231,8 +202,8 @@ class ResBlock(TimestepBlock):
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims)
|
||||
self.x_upd = Upsample(channels, False, dims)
|
||||
self.h_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
self.x_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims)
|
||||
self.x_upd = Downsample(channels, False, dims)
|
||||
@@ -567,7 +538,7 @@ class GlideUNetModel(ModelMixin, ConfigMixin):
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||
else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
|
||||
@@ -3,6 +3,7 @@ import torch
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Upsample
|
||||
|
||||
|
||||
class Mish(torch.nn.Module):
|
||||
@@ -10,15 +11,6 @@ class Mish(torch.nn.Module):
|
||||
return x * torch.tanh(torch.nn.functional.softplus(x))
|
||||
|
||||
|
||||
class Upsample(torch.nn.Module):
|
||||
def __init__(self, dim):
|
||||
super(Upsample, self).__init__()
|
||||
self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Downsample(torch.nn.Module):
|
||||
def __init__(self, dim):
|
||||
super(Downsample, self).__init__()
|
||||
@@ -166,7 +158,7 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
|
||||
ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
|
||||
ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
|
||||
Residual(Rezero(LinearAttention(dim_in))),
|
||||
Upsample(dim_in),
|
||||
Upsample(dim_in, use_conv_transpose=True),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
@@ -10,6 +10,7 @@ import torch.nn.functional as F
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .embeddings import get_timestep_embedding
|
||||
from .resnet import Upsample
|
||||
|
||||
|
||||
# try:
|
||||
@@ -403,35 +404,6 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
@@ -506,8 +478,8 @@ class ResBlock(TimestepBlock):
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims)
|
||||
self.x_upd = Upsample(channels, False, dims)
|
||||
self.h_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
self.x_upd = Upsample(channels, use_conv=False, dims=dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims)
|
||||
self.x_upd = Downsample(channels, False, dims)
|
||||
@@ -974,7 +946,7 @@ class UNetLDMModel(ModelMixin, ConfigMixin):
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||
else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
|
||||
@@ -144,16 +144,12 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
return pred_prev_sample
|
||||
|
||||
def training_step(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor):
|
||||
if timesteps.dim() != 1:
|
||||
raise ValueError("`timesteps` must be a 1D tensor")
|
||||
|
||||
device = original_samples.device
|
||||
batch_size = original_samples.shape[0]
|
||||
timesteps = timesteps.reshape(batch_size, 1, 1, 1)
|
||||
|
||||
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
||||
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
|
||||
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
||||
noisy_samples = sqrt_alpha_prod.to(device) * original_samples + sqrt_one_minus_alpha_prod.to(device) * noise
|
||||
sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)
|
||||
|
||||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
|
||||
@@ -14,6 +14,8 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Union
|
||||
|
||||
|
||||
SCHEDULER_CONFIG_NAME = "scheduler_config.json"
|
||||
|
||||
@@ -50,3 +52,29 @@ class SchedulerMixin:
|
||||
return torch.log(tensor)
|
||||
|
||||
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
|
||||
|
||||
def match_shape(
|
||||
self,
|
||||
values: Union[np.ndarray, torch.Tensor],
|
||||
broadcast_array: Union[np.ndarray, torch.Tensor]
|
||||
):
|
||||
"""
|
||||
Turns a 1-D array into an array or tensor with len(broadcast_array.shape) dims.
|
||||
|
||||
Args:
|
||||
timesteps: an array or tensor of values to extract.
|
||||
broadcast_array: an array with a larger shape of K dimensions with the batch
|
||||
dimension equal to the length of timesteps.
|
||||
Returns:
|
||||
a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
||||
"""
|
||||
|
||||
tensor_format = getattr(self, "tensor_format", "pt")
|
||||
values = values.flatten()
|
||||
|
||||
while len(values.shape) < len(broadcast_array.shape):
|
||||
values = values[..., None]
|
||||
if tensor_format == "pt":
|
||||
values = values.to(broadcast_array.device)
|
||||
|
||||
return values
|
||||
|
||||
@@ -22,6 +22,7 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from diffusers.models.embeddings import get_timestep_embedding
|
||||
from diffusers.models.resnet import Upsample
|
||||
from diffusers.testing_utils import floats_tensor, slow, torch_device
|
||||
|
||||
|
||||
@@ -113,3 +114,53 @@ class EmbeddingsTests(unittest.TestCase):
|
||||
torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]),
|
||||
1e-3,
|
||||
)
|
||||
|
||||
|
||||
class UpsampleBlockTests(unittest.TestCase):
|
||||
def test_upsample_default(self):
|
||||
torch.manual_seed(0)
|
||||
sample = torch.randn(1, 32, 32, 32)
|
||||
upsample = Upsample(channels=32, use_conv=False)
|
||||
with torch.no_grad():
|
||||
upsampled = upsample(sample)
|
||||
|
||||
assert upsampled.shape == (1, 32, 64, 64)
|
||||
output_slice = upsampled[0, -1, -3:, -3:]
|
||||
expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254])
|
||||
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
|
||||
|
||||
def test_upsample_with_conv(self):
|
||||
torch.manual_seed(0)
|
||||
sample = torch.randn(1, 32, 32, 32)
|
||||
upsample = Upsample(channels=32, use_conv=True)
|
||||
with torch.no_grad():
|
||||
upsampled = upsample(sample)
|
||||
|
||||
assert upsampled.shape == (1, 32, 64, 64)
|
||||
output_slice = upsampled[0, -1, -3:, -3:]
|
||||
expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841])
|
||||
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
|
||||
|
||||
def test_upsample_with_conv_out_dim(self):
|
||||
torch.manual_seed(0)
|
||||
sample = torch.randn(1, 32, 32, 32)
|
||||
upsample = Upsample(channels=32, use_conv=True, out_channels=64)
|
||||
with torch.no_grad():
|
||||
upsampled = upsample(sample)
|
||||
|
||||
assert upsampled.shape == (1, 64, 64, 64)
|
||||
output_slice = upsampled[0, -1, -3:, -3:]
|
||||
expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755])
|
||||
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
|
||||
|
||||
def test_upsample_with_transpose(self):
|
||||
torch.manual_seed(0)
|
||||
sample = torch.randn(1, 32, 32, 32)
|
||||
upsample = Upsample(channels=32, use_conv=False, use_conv_transpose=True)
|
||||
with torch.no_grad():
|
||||
upsampled = upsample(sample)
|
||||
|
||||
assert upsampled.shape == (1, 32, 64, 64)
|
||||
output_slice = upsampled[0, -1, -3:, -3:]
|
||||
expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046])
|
||||
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
|
||||
|
||||
@@ -21,7 +21,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from diffusers import (
|
||||
from diffusers import ( # GradTTSPipeline,
|
||||
BDDMPipeline,
|
||||
DDIMPipeline,
|
||||
DDIMScheduler,
|
||||
@@ -30,7 +30,6 @@ from diffusers import (
|
||||
GlidePipeline,
|
||||
GlideSuperResUNetModel,
|
||||
GlideTextToImageUNetModel,
|
||||
GradTTSPipeline,
|
||||
GradTTSScheduler,
|
||||
LatentDiffusionPipeline,
|
||||
NCSNpp,
|
||||
|
||||
Reference in New Issue
Block a user