1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

IP-Adapter for StableDiffusion3InpaintPipeline (#10581)

* Added support for IP-Adapter

* Added joint_attention_kwargs property
This commit is contained in:
Daniel Regado
2025-01-15 06:52:23 +00:00
committed by GitHub
parent 3d70777379
commit 4dec63c18e
2 changed files with 132 additions and 8 deletions

View File

@@ -13,19 +13,21 @@
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Union
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import (
BaseImageProcessor,
CLIPTextModelWithProjection,
CLIPTokenizer,
PreTrainedModel,
T5EncoderModel,
T5TokenizerFast,
)
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
from ...loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin
from ...models.autoencoders import AutoencoderKL
from ...models.transformers import SD3Transformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
@@ -162,7 +164,7 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin):
class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin):
r"""
Args:
transformer ([`SD3Transformer2DModel`]):
@@ -194,10 +196,14 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
tokenizer_3 (`T5TokenizerFast`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
image_encoder (`PreTrainedModel`, *optional*):
Pre-trained Vision Model for IP Adapter.
feature_extractor (`BaseImageProcessor`, *optional*):
Image processor for IP Adapter.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
_optional_components = []
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
_optional_components = ["image_encoder", "feature_extractor"]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
def __init__(
@@ -211,6 +217,8 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
tokenizer_2: CLIPTokenizer,
text_encoder_3: T5EncoderModel,
tokenizer_3: T5TokenizerFast,
image_encoder: PreTrainedModel = None,
feature_extractor: BaseImageProcessor = None,
):
super().__init__()
@@ -224,6 +232,8 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
tokenizer_3=tokenizer_3,
transformer=transformer,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
@@ -818,6 +828,10 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@@ -826,6 +840,84 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
def interrupt(self):
return self._interrupt
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_image
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
"""Encodes the given image into a feature representation using a pre-trained image encoder.
Args:
image (`PipelineImageInput`):
Input image to be encoded.
device: (`torch.device`):
Torch device.
Returns:
`torch.Tensor`: The encoded image feature representation.
"""
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=self.dtype)
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
) -> torch.Tensor:
"""Prepares image embeddings for use in the IP-Adapter.
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
Args:
ip_adapter_image (`PipelineImageInput`, *optional*):
The input image to extract features from for IP-Adapter.
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
Precomputed image embeddings.
device: (`torch.device`, *optional*):
Torch device.
num_images_per_prompt (`int`, defaults to 1):
Number of images that should be generated per prompt.
do_classifier_free_guidance (`bool`, defaults to True):
Whether to use classifier free guidance or not.
"""
device = device or self._execution_device
if ip_adapter_image_embeds is not None:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
else:
single_image_embeds = ip_adapter_image_embeds
elif ip_adapter_image is not None:
single_image_embeds = self.encode_image(ip_adapter_image, device)
if do_classifier_free_guidance:
single_negative_image_embeds = torch.zeros_like(single_image_embeds)
else:
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
return image_embeds.to(device=device)
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self, *args, **kwargs):
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
logger.warning(
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
)
super().enable_sequential_cpu_offload(*args, **kwargs)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -853,8 +945,11 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
negative_prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
@@ -890,9 +985,9 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will ge generated by `mask_image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
padding_mask_crop (`int`, *optional*, defaults to `None`):
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
@@ -953,12 +1048,22 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
ip_adapter_image (`PipelineImageInput`, *optional*):
Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images,
emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to
`True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
@@ -1006,6 +1111,7 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
@@ -1160,7 +1266,22 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
f"The transformer {self.transformer.__class__} should have 16 input channels or 33 input channels, not {self.transformer.config.in_channels}."
)
# 7. Denoising loop
# 7. Prepare image embeddings
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None:
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
if self.joint_attention_kwargs is None:
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds}
else:
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
@@ -1181,6 +1302,7 @@ class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, Fro
timestep=timestep,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]

View File

@@ -106,6 +106,8 @@ class StableDiffusion3InpaintPipelineFastTests(PipelineLatentTesterMixin, unitte
"tokenizer_3": tokenizer_3,
"transformer": transformer,
"vae": vae,
"image_encoder": None,
"feature_extractor": None,
}
def get_dummy_inputs(self, device, seed=0):