mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Merge branch 'main' of https://github.com/huggingface/diffusers into main
This commit is contained in:
2
Makefile
2
Makefile
@@ -3,7 +3,7 @@
|
||||
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
|
||||
export PYTHONPATH = src
|
||||
|
||||
check_dirs := tests src utils
|
||||
check_dirs := examples tests src utils
|
||||
|
||||
modified_only_fixup:
|
||||
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
|
||||
|
||||
@@ -8,14 +8,23 @@ import PIL.Image
|
||||
from accelerate import Accelerator
|
||||
from datasets import load_dataset
|
||||
from diffusers import DDPM, DDPMScheduler, UNetModel
|
||||
from torchvision.transforms import CenterCrop, Compose, Lambda, RandomHorizontalFlip, Resize, ToTensor
|
||||
from torchvision.transforms import (
|
||||
Compose,
|
||||
InterpolationMode,
|
||||
Lambda,
|
||||
RandomCrop,
|
||||
RandomHorizontalFlip,
|
||||
RandomVerticalFlip,
|
||||
Resize,
|
||||
ToTensor,
|
||||
)
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import get_linear_schedule_with_warmup
|
||||
|
||||
|
||||
def set_seed(seed):
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
# torch.backends.cudnn.deterministic = True
|
||||
# torch.backends.cudnn.benchmark = False
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
np.random.seed(seed)
|
||||
@@ -30,13 +39,13 @@ model = UNetModel(
|
||||
attn_resolutions=(16,),
|
||||
ch=128,
|
||||
ch_mult=(1, 2, 2, 2),
|
||||
dropout=0.1,
|
||||
dropout=0.0,
|
||||
num_res_blocks=2,
|
||||
resamp_with_conv=True,
|
||||
resolution=32
|
||||
resolution=32,
|
||||
)
|
||||
noise_scheduler = DDPMScheduler(timesteps=1000)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
|
||||
|
||||
num_epochs = 100
|
||||
batch_size = 64
|
||||
@@ -44,14 +53,15 @@ gradient_accumulation_steps = 2
|
||||
|
||||
augmentations = Compose(
|
||||
[
|
||||
Resize(32),
|
||||
CenterCrop(32),
|
||||
Resize(32, interpolation=InterpolationMode.BILINEAR),
|
||||
RandomHorizontalFlip(),
|
||||
RandomVerticalFlip(),
|
||||
RandomCrop(32),
|
||||
ToTensor(),
|
||||
Lambda(lambda x: x * 2 - 1),
|
||||
]
|
||||
)
|
||||
dataset = load_dataset("huggan/pokemon", split="train")
|
||||
dataset = load_dataset("huggan/flowers-102-categories", split="train")
|
||||
|
||||
|
||||
def transforms(examples):
|
||||
@@ -59,24 +69,24 @@ def transforms(examples):
|
||||
return {"input": images}
|
||||
|
||||
|
||||
dataset = dataset.shuffle(seed=0)
|
||||
dataset.set_transform(transforms)
|
||||
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)
|
||||
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
#lr_scheduler = get_linear_schedule_with_warmup(
|
||||
# optimizer=optimizer,
|
||||
# num_warmup_steps=1000,
|
||||
# num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps,
|
||||
#)
|
||||
lr_scheduler = get_linear_schedule_with_warmup(
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=500,
|
||||
num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps,
|
||||
)
|
||||
|
||||
model, optimizer, train_dataloader = accelerator.prepare(
|
||||
model, optimizer, train_dataloader
|
||||
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
model, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
model.train()
|
||||
pbar = tqdm(total=len(train_dataloader), unit="ba")
|
||||
pbar.set_description(f"Epoch {epoch}")
|
||||
losses = []
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
clean_images = batch["input"]
|
||||
noisy_images = torch.empty_like(clean_images)
|
||||
@@ -101,10 +111,12 @@ for epoch in range(num_epochs):
|
||||
accelerator.backward(loss)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
optimizer.step()
|
||||
# lr_scheduler.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
loss = loss.detach().item()
|
||||
losses.append(loss)
|
||||
pbar.update(1)
|
||||
pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"])
|
||||
pbar.set_postfix(loss=loss, avg_loss=np.mean(losses), lr=optimizer.param_groups[0]["lr"])
|
||||
|
||||
optimizer.step()
|
||||
|
||||
@@ -124,5 +136,5 @@ for epoch in range(num_epochs):
|
||||
image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
|
||||
# save image
|
||||
pipeline.save_pretrained("./poke-ddpm")
|
||||
image_pil.save(f"./poke-ddpm/test_{epoch}.png")
|
||||
pipeline.save_pretrained("./flowers-ddpm")
|
||||
image_pil.save(f"./flowers-ddpm/test_{epoch}.png")
|
||||
@@ -225,11 +225,11 @@ class ConfigMixin:
|
||||
text = reader.read()
|
||||
return json.loads(text)
|
||||
|
||||
# def __eq__(self, other):
|
||||
# return self.__dict__ == other.__dict__
|
||||
def __eq__(self, other):
|
||||
return self.__dict__ == other.__dict__
|
||||
|
||||
# def __repr__(self):
|
||||
# return f"{self.__class__.__name__} {self.to_json_string()}"
|
||||
def __repr__(self):
|
||||
return f"{self.__class__.__name__} {self.to_json_string()}"
|
||||
|
||||
@property
|
||||
def config(self) -> Dict[str, Any]:
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import DDIM, DDPM, DDIMScheduler, DDPMScheduler, LatentDiffusion, UNetModel, PNDM, PNDMScheduler
|
||||
from diffusers import DDIM, DDPM, PNDM, DDIMScheduler, DDPMScheduler, LatentDiffusion, PNDMScheduler, UNetModel
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.testing_utils import floats_tensor, slow, torch_device
|
||||
|
||||
Reference in New Issue
Block a user