1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[qwen] Qwen image edit followups (#12166)

* add docs.

* more docs.

* xfail full compilation for Qwen for now.

* tests

* up

* up

* up

* reviewer feedback.
This commit is contained in:
Sayak Paul
2025-08-18 08:33:07 +05:30
committed by GitHub
parent 76c809e2ef
commit 4d9b82297f
7 changed files with 280 additions and 13 deletions

View File

@@ -16,7 +16,12 @@
Qwen-Image from the Qwen team is an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese.
Check out the model card [here](https://huggingface.co/Qwen/Qwen-Image) to learn more.
Qwen-Image comes in the following variants:
| model type | model id |
|:----------:|:--------:|
| Qwen-Image | [`Qwen/Qwen-Image`](https://huggingface.co/Qwen/Qwen-Image) |
| Qwen-Image-Edit | [`Qwen/Qwen-Image-Edit`](https://huggingface.co/Qwen/Qwen-Image-Edit) |
<Tip>
@@ -87,10 +92,6 @@ image.save("qwen_fewsteps.png")
- all
- __call__
## QwenImagePipelineOutput
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput
## QwenImageImg2ImgPipeline
[[autodoc]] QwenImageImg2ImgPipeline
@@ -102,3 +103,13 @@ image.save("qwen_fewsteps.png")
[[autodoc]] QwenImageInpaintPipeline
- all
- __call__
## QwenImageEditPipeline
[[autodoc]] QwenImageEditPipeline
- all
- __call__
## QwenImagePipelineOutput
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput

View File

@@ -489,10 +489,10 @@ else:
"PixArtAlphaPipeline",
"PixArtSigmaPAGPipeline",
"PixArtSigmaPipeline",
"QwenImageEditPipeline",
"QwenImageImg2ImgPipeline",
"QwenImageInpaintPipeline",
"QwenImagePipeline",
"QwenImageEditPipeline",
"ReduxImageEncoder",
"SanaControlNetPipeline",
"SanaPAGPipeline",

View File

@@ -219,6 +219,7 @@ class QwenEmbedRope(nn.Module):
video_freq = self.rope_cache[rope_key]
else:
video_freq = self._compute_video_freqs(frame, height, width, idx)
video_freq = video_freq.to(device)
vid_freqs.append(video_freq)
if self.scale_rope:

View File

@@ -24,9 +24,9 @@ except OptionalDependencyNotAvailable:
else:
_import_structure["modeling_qwenimage"] = ["ReduxImageEncoder"]
_import_structure["pipeline_qwenimage"] = ["QwenImagePipeline"]
_import_structure["pipeline_qwenimage_edit"] = ["QwenImageEditPipeline"]
_import_structure["pipeline_qwenimage_img2img"] = ["QwenImageImg2ImgPipeline"]
_import_structure["pipeline_qwenimage_inpaint"] = ["QwenImageInpaintPipeline"]
_import_structure["pipeline_qwenimage_edit"] = ["QwenImageEditPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:

View File

@@ -46,15 +46,20 @@ EXAMPLE_DOC_STRING = """
>>> import torch
>>> from PIL import Image
>>> from diffusers import QwenImageEditPipeline
>>> from diffusers.utils import load_image
>>> pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "Change the cat to a dog"
>>> image = Image.open("cat.png")
>>> image = load_image(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
... ).convert("RGB")
>>> prompt = (
... "Make Pikachu hold a sign that says 'Qwen Edit is awesome', yarn art style, detailed, vibrant colors"
... )
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(image, prompt, num_inference_steps=50).images[0]
>>> image.save("qwenimageedit.png")
>>> image.save("qwenimage_edit.png")
```
"""
PREFERRED_QWENIMAGE_RESOLUTIONS = [
@@ -178,7 +183,7 @@ def calculate_dimensions(target_area, ratio):
class QwenImageEditPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
r"""
The QwenImage pipeline for text-to-image generation.
The Qwen-Image-Edit pipeline for image editing.
Args:
transformer ([`QwenImageTransformer2DModel`]):
@@ -217,8 +222,8 @@ class QwenImageEditPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
transformer=transformer,
scheduler=scheduler,
)
self.latent_channels = 16
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
@@ -635,7 +640,9 @@ class QwenImageEditPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is a list with the generated images.
"""
calculated_width, calculated_height, _ = calculate_dimensions(1024 * 1024, image.width / image.height)
image_size = image[0].size if isinstance(image, list) else image.size
width, height = image_size
calculated_width, calculated_height, _ = calculate_dimensions(1024 * 1024, width / height)
height = height or calculated_height
width = width or calculated_width

View File

@@ -15,6 +15,7 @@
import unittest
import pytest
import torch
from diffusers import QwenImageTransformer2DModel
@@ -99,3 +100,7 @@ class QwenImageTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCas
def prepare_dummy_input(self, height, width):
return QwenImageTransformerTests().prepare_dummy_input(height=height, width=width)
@pytest.mark.xfail(condition=True, reason="RoPE needs to be revisited.", strict=True)
def test_torch_compile_recompilation_and_graph_break(self):
super().test_torch_compile_recompilation_and_graph_break()

View File

@@ -0,0 +1,243 @@
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import pytest
import torch
from PIL import Image
from transformers import Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
from diffusers import (
AutoencoderKLQwenImage,
FlowMatchEulerDiscreteScheduler,
QwenImageEditPipeline,
QwenImageTransformer2DModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class QwenImageEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = QwenImageEditPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = frozenset(["prompt", "image"])
image_params = frozenset(["image"])
image_latents_params = frozenset(["latents"])
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
supports_dduf = False
test_xformers_attention = False
test_layerwise_casting = True
test_group_offloading = True
def get_dummy_components(self):
tiny_ckpt_id = "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration"
torch.manual_seed(0)
transformer = QwenImageTransformer2DModel(
patch_size=2,
in_channels=16,
out_channels=4,
num_layers=2,
attention_head_dim=16,
num_attention_heads=3,
joint_attention_dim=16,
guidance_embeds=False,
axes_dims_rope=(8, 4, 4),
)
torch.manual_seed(0)
z_dim = 4
vae = AutoencoderKLQwenImage(
base_dim=z_dim * 6,
z_dim=z_dim,
dim_mult=[1, 2, 4],
num_res_blocks=1,
temperal_downsample=[False, True],
latents_mean=[0.0] * z_dim,
latents_std=[1.0] * z_dim,
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
torch.manual_seed(0)
config = Qwen2_5_VLConfig(
text_config={
"hidden_size": 16,
"intermediate_size": 16,
"num_hidden_layers": 2,
"num_attention_heads": 2,
"num_key_value_heads": 2,
"rope_scaling": {
"mrope_section": [1, 1, 2],
"rope_type": "default",
"type": "default",
},
"rope_theta": 1000000.0,
},
vision_config={
"depth": 2,
"hidden_size": 16,
"intermediate_size": 16,
"num_heads": 2,
"out_hidden_size": 16,
},
hidden_size=16,
vocab_size=152064,
vision_end_token_id=151653,
vision_start_token_id=151652,
vision_token_id=151654,
)
text_encoder = Qwen2_5_VLForConditionalGeneration(config)
tokenizer = Qwen2Tokenizer.from_pretrained(tiny_ckpt_id)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"processor": Qwen2VLProcessor.from_pretrained(tiny_ckpt_id),
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "dance monkey",
"image": Image.new("RGB", (32, 32)),
"negative_prompt": "bad quality",
"generator": generator,
"num_inference_steps": 2,
"true_cfg_scale": 1.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
generated_image = image[0]
self.assertEqual(generated_image.shape, (3, 32, 32))
# fmt: off
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]])
# fmt: on
generated_slice = generated_image.flatten()
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs)[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
def test_vae_tiling(self, expected_diff_max: float = 0.2):
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
# Without tiling
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_without_tiling = pipe(**inputs)[0]
# With tiling
pipe.vae.enable_tiling(
tile_sample_min_height=96,
tile_sample_min_width=96,
tile_sample_stride_height=64,
tile_sample_stride_width=64,
)
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_with_tiling = pipe(**inputs)[0]
self.assertLess(
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
expected_diff_max,
"VAE tiling should not affect the inference results",
)
@pytest.mark.xfail(condition=True, reason="Preconfigured embeddings need to be revisited.", strict=True)
def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=1e-4, rtol=1e-4):
super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict, atol, rtol)