1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

remove the duplicated components_manager file I forgot to deletee

This commit is contained in:
yiyixuxu
2025-05-20 18:07:27 +02:00
parent 61dac3bbe4
commit 4968edc5dc

View File

@@ -1,862 +0,0 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from itertools import combinations
from typing import List, Optional, Union, Dict, Any
import copy
import torch
import time
from dataclasses import dataclass
from ..utils import (
is_accelerate_available,
logging,
)
from ..models.modeling_utils import ModelMixin
from .modular_pipeline_utils import ComponentSpec
if is_accelerate_available():
from accelerate.hooks import ModelHook, add_hook_to_module, remove_hook_from_module
from accelerate.state import PartialState
from accelerate.utils import send_to_device
from accelerate.utils.memory import clear_device_cache
from accelerate.utils.modeling import convert_file_size_to_int
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# YiYi Notes: copied from modeling_utils.py (decide later where to put this)
def get_memory_footprint(self, return_buffers=True):
r"""
Get the memory footprint of a model. This will return the memory footprint of the current model in bytes. Useful to
benchmark the memory footprint of the current model and design some tests. Solution inspired from the PyTorch
discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2
Arguments:
return_buffers (`bool`, *optional*, defaults to `True`):
Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers are
tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch norm
layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
"""
mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
if return_buffers:
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
mem = mem + mem_bufs
return mem
class CustomOffloadHook(ModelHook):
"""
A hook that offloads a model on the CPU until its forward pass is called. It ensures the model and its inputs are
on the given device. Optionally offloads other models to the CPU before the forward pass is called.
Args:
execution_device(`str`, `int` or `torch.device`, *optional*):
The device on which the model should be executed. Will default to the MPS device if it's available, then
GPU 0 if there is a GPU, and finally to the CPU.
"""
def __init__(
self,
execution_device: Optional[Union[str, int, torch.device]] = None,
other_hooks: Optional[List["UserCustomOffloadHook"]] = None,
offload_strategy: Optional["AutoOffloadStrategy"] = None,
):
self.execution_device = execution_device if execution_device is not None else PartialState().default_device
self.other_hooks = other_hooks
self.offload_strategy = offload_strategy
self.model_id = None
def set_strategy(self, offload_strategy: "AutoOffloadStrategy"):
self.offload_strategy = offload_strategy
def add_other_hook(self, hook: "UserCustomOffloadHook"):
"""
Add a hook to the list of hooks to consider for offloading.
"""
if self.other_hooks is None:
self.other_hooks = []
self.other_hooks.append(hook)
def init_hook(self, module):
return module.to("cpu")
def pre_forward(self, module, *args, **kwargs):
if module.device != self.execution_device:
if self.other_hooks is not None:
hooks_to_offload = [hook for hook in self.other_hooks if hook.model.device == self.execution_device]
# offload all other hooks
start_time = time.perf_counter()
if self.offload_strategy is not None:
hooks_to_offload = self.offload_strategy(
hooks=hooks_to_offload,
model_id=self.model_id,
model=module,
execution_device=self.execution_device,
)
end_time = time.perf_counter()
logger.info(
f" time taken to apply offload strategy for {self.model_id}: {(end_time - start_time):.2f} seconds"
)
for hook in hooks_to_offload:
logger.info(
f"moving {self.model_id} to {self.execution_device}, offloading {hook.model_id} to cpu"
)
hook.offload()
if hooks_to_offload:
clear_device_cache()
module.to(self.execution_device)
return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device)
class UserCustomOffloadHook:
"""
A simple hook grouping a model and a `CustomOffloadHook`, which provides easy APIs for to call the init method of
the hook or remove it entirely.
"""
def __init__(self, model_id, model, hook):
self.model_id = model_id
self.model = model
self.hook = hook
def offload(self):
self.hook.init_hook(self.model)
def attach(self):
add_hook_to_module(self.model, self.hook)
self.hook.model_id = self.model_id
def remove(self):
remove_hook_from_module(self.model)
self.hook.model_id = None
def add_other_hook(self, hook: "UserCustomOffloadHook"):
self.hook.add_other_hook(hook)
def custom_offload_with_hook(
model_id: str,
model: torch.nn.Module,
execution_device: Union[str, int, torch.device] = None,
offload_strategy: Optional["AutoOffloadStrategy"] = None,
):
hook = CustomOffloadHook(execution_device=execution_device, offload_strategy=offload_strategy)
user_hook = UserCustomOffloadHook(model_id=model_id, model=model, hook=hook)
user_hook.attach()
return user_hook
class AutoOffloadStrategy:
"""
Offload strategy that should be used with `CustomOffloadHook` to automatically offload models to the CPU based on
the available memory on the device.
"""
def __init__(self, memory_reserve_margin="3GB"):
self.memory_reserve_margin = convert_file_size_to_int(memory_reserve_margin)
def __call__(self, hooks, model_id, model, execution_device):
if len(hooks) == 0:
return []
current_module_size = get_memory_footprint(model)
mem_on_device = torch.cuda.mem_get_info(execution_device.index)[0]
mem_on_device = mem_on_device - self.memory_reserve_margin
if current_module_size < mem_on_device:
return []
min_memory_offload = current_module_size - mem_on_device
logger.info(f" search for models to offload in order to free up {min_memory_offload / 1024**3:.2f} GB memory")
# exlucde models that's not currently loaded on the device
module_sizes = dict(
sorted(
{hook.model_id: get_memory_footprint(hook.model) for hook in hooks}.items(),
key=lambda x: x[1],
reverse=True,
)
)
def search_best_candidate(module_sizes, min_memory_offload):
"""
search the optimal combination of models to offload to cpu, given a dictionary of module sizes and a
minimum memory offload size. the combination of models should add up to the smallest modulesize that is
larger than `min_memory_offload`
"""
model_ids = list(module_sizes.keys())
best_candidate = None
best_size = float("inf")
for r in range(1, len(model_ids) + 1):
for candidate_model_ids in combinations(model_ids, r):
candidate_size = sum(
module_sizes[candidate_model_id] for candidate_model_id in candidate_model_ids
)
if candidate_size < min_memory_offload:
continue
else:
if best_candidate is None or candidate_size < best_size:
best_candidate = candidate_model_ids
best_size = candidate_size
return best_candidate
best_offload_model_ids = search_best_candidate(module_sizes, min_memory_offload)
if best_offload_model_ids is None:
# if no combination is found, meaning that we cannot meet the memory requirement, offload all models
logger.warning("no combination of models to offload to cpu is found, offloading all models")
hooks_to_offload = hooks
else:
hooks_to_offload = [hook for hook in hooks if hook.model_id in best_offload_model_ids]
return hooks_to_offload
from .modular_pipeline_utils import ComponentSpec
import uuid
class ComponentsManager:
def __init__(self):
self.components = OrderedDict()
self.added_time = OrderedDict() # Store when components were added
self.collections = OrderedDict() # collection_name -> set of component_names
self.model_hooks = None
self._auto_offload_enabled = False
def _get_by_collection(self, collection: str):
"""
Select components by collection name.
"""
selected_components = {}
if collection in self.collections:
component_ids = self.collections[collection]
for component_id in component_ids:
selected_components[component_id] = self.components[component_id]
return selected_components
def _get_by_load_id(self, load_id: str):
"""
Select components by its load_id.
"""
selected_components = {}
for name, component in self.components.items():
if hasattr(component, "_diffusers_load_id") and component._diffusers_load_id == load_id:
selected_components[name] = component
return selected_components
def add(self, name, component, collection: Optional[str] = None):
for comp_id, comp in self.components.items():
if comp == component:
logger.warning(f"Component '{name}' already exists in ComponentsManager")
return comp_id
component_id = f"{name}_{uuid.uuid4()}"
if hasattr(component, "_diffusers_load_id") and component._diffusers_load_id != "null":
components_with_same_load_id = self._get_by_load_id(component._diffusers_load_id)
if components_with_same_load_id:
existing = ", ".join(components_with_same_load_id.keys())
logger.warning(
f"Component '{name}' has duplicate load_id '{component._diffusers_load_id}' with existing components: {existing}. "
f"To remove a duplicate, call `components_manager.remove('<component_name>')`."
)
# add component to components manager
self.components[component_id] = component
self.added_time[component_id] = time.time()
if collection:
if collection not in self.collections:
self.collections[collection] = set()
self.collections[collection].add(component_id)
if self._auto_offload_enabled:
self.enable_auto_cpu_offload(self._auto_offload_device)
logger.info(f"Added component '{name}' to ComponentsManager as '{component_id}'")
return component_id
def remove(self, name: Union[str, List[str]]):
if name not in self.components:
logger.warning(f"Component '{name}' not found in ComponentsManager")
return
self.components.pop(name)
self.added_time.pop(name)
for collection in self.collections:
if name in self.collections[collection]:
self.collections[collection].remove(name)
if self._auto_offload_enabled:
self.enable_auto_cpu_offload(self._auto_offload_device)
def get(self, names: Union[str, List[str]] = None, collection: Optional[str] = None, load_id: Optional[str] = None,
as_name_component_tuples: bool = False):
"""
Select components by name with simple pattern matching.
Args:
names: Component name(s) or pattern(s)
Patterns:
- "unet" : match any component with base name "unet" (e.g., unet_123abc)
- "!unet" : everything except components with base name "unet"
- "unet*" : anything with base name starting with "unet"
- "!unet*" : anything with base name NOT starting with "unet"
- "*unet*" : anything with base name containing "unet"
- "!*unet*" : anything with base name NOT containing "unet"
- "refiner|vae|unet" : anything with base name exactly matching "refiner", "vae", or "unet"
- "!refiner|vae|unet" : anything with base name NOT exactly matching "refiner", "vae", or "unet"
- "unet*|vae*" : anything with base name starting with "unet" OR starting with "vae"
collection: Optional collection to filter by
load_id: Optional load_id to filter by
as_name_component_tuples: If True, returns a list of (name, component) tuples using base names
instead of a dictionary with component IDs as keys
Returns:
Dictionary mapping component IDs to components,
or list of (base_name, component) tuples if as_name_component_tuples=True
"""
if collection:
if collection not in self.collections:
logger.warning(f"Collection '{collection}' not found in ComponentsManager")
return [] if as_name_component_tuples else {}
components = self._get_by_collection(collection)
else:
components = self.components
if load_id:
components = self._get_by_load_id(load_id)
# Helper to extract base name from component_id
def get_base_name(component_id):
parts = component_id.split('_')
# If the last part looks like a UUID, remove it
if len(parts) > 1 and len(parts[-1]) >= 8 and '-' in parts[-1]:
return '_'.join(parts[:-1])
return component_id
if names is None:
if as_name_component_tuples:
return [(get_base_name(comp_id), comp) for comp_id, comp in components.items()]
else:
return components
# Create mapping from component_id to base_name for all components
base_names = {comp_id: get_base_name(comp_id) for comp_id in components.keys()}
def matches_pattern(component_id, pattern, exact_match=False):
"""
Helper function to check if a component matches a pattern based on its base name.
Args:
component_id: The component ID to check
pattern: The pattern to match against
exact_match: If True, only exact matches to base_name are considered
"""
base_name = base_names[component_id]
# Exact match with base name
if exact_match:
return pattern == base_name
# Prefix match (ends with *)
elif pattern.endswith('*'):
prefix = pattern[:-1]
return base_name.startswith(prefix)
# Contains match (starts with *)
elif pattern.startswith('*'):
search = pattern[1:-1] if pattern.endswith('*') else pattern[1:]
return search in base_name
# Exact match (no wildcards)
else:
return pattern == base_name
if isinstance(names, str):
# Check if this is a "not" pattern
is_not_pattern = names.startswith('!')
if is_not_pattern:
names = names[1:] # Remove the ! prefix
# Handle OR patterns (containing |)
if '|' in names:
terms = names.split('|')
matches = {}
for comp_id, comp in components.items():
# For OR patterns with exact names (no wildcards), we do exact matching on base names
exact_match = all(not (term.startswith('*') or term.endswith('*')) for term in terms)
# Check if any of the terms match this component
should_include = any(matches_pattern(comp_id, term, exact_match) for term in terms)
# Flip the decision if this is a NOT pattern
if is_not_pattern:
should_include = not should_include
if should_include:
matches[comp_id] = comp
log_msg = "NOT " if is_not_pattern else ""
match_type = "exactly matching" if exact_match else "matching any of patterns"
logger.info(f"Getting components {log_msg}{match_type} {terms}: {list(matches.keys())}")
# Try exact match with a base name
elif any(names == base_name for base_name in base_names.values()):
# Find all components with this base name
matches = {
comp_id: comp for comp_id, comp in components.items()
if (base_names[comp_id] == names) != is_not_pattern
}
if is_not_pattern:
logger.info(f"Getting all components except those with base name '{names}': {list(matches.keys())}")
else:
logger.info(f"Getting components with base name '{names}': {list(matches.keys())}")
# Prefix match (ends with *)
elif names.endswith('*'):
prefix = names[:-1]
matches = {
comp_id: comp for comp_id, comp in components.items()
if base_names[comp_id].startswith(prefix) != is_not_pattern
}
if is_not_pattern:
logger.info(f"Getting components NOT starting with '{prefix}': {list(matches.keys())}")
else:
logger.info(f"Getting components starting with '{prefix}': {list(matches.keys())}")
# Contains match (starts with *)
elif names.startswith('*'):
search = names[1:-1] if names.endswith('*') else names[1:]
matches = {
comp_id: comp for comp_id, comp in components.items()
if (search in base_names[comp_id]) != is_not_pattern
}
if is_not_pattern:
logger.info(f"Getting components NOT containing '{search}': {list(matches.keys())}")
else:
logger.info(f"Getting components containing '{search}': {list(matches.keys())}")
# Substring match (no wildcards, but not an exact component name)
elif any(names in base_name for base_name in base_names.values()):
matches = {
comp_id: comp for comp_id, comp in components.items()
if (names in base_names[comp_id]) != is_not_pattern
}
if is_not_pattern:
logger.info(f"Getting components NOT containing '{names}': {list(matches.keys())}")
else:
logger.info(f"Getting components containing '{names}': {list(matches.keys())}")
else:
raise ValueError(f"Component or pattern '{names}' not found in ComponentsManager")
if not matches:
raise ValueError(f"No components found matching pattern '{names}'")
if as_name_component_tuples:
return [(base_names[comp_id], comp) for comp_id, comp in matches.items()]
else:
return matches
elif isinstance(names, list):
results = {}
for name in names:
result = self.get(name, collection, load_id, as_name_component_tuples=False)
results.update(result)
if as_name_component_tuples:
return [(base_names[comp_id], comp) for comp_id, comp in results.items()]
else:
return results
else:
raise ValueError(f"Invalid type for names: {type(names)}")
def enable_auto_cpu_offload(self, device: Union[str, int, torch.device]="cuda", memory_reserve_margin="3GB"):
for name, component in self.components.items():
if isinstance(component, torch.nn.Module) and hasattr(component, "_hf_hook"):
remove_hook_from_module(component, recurse=True)
self.disable_auto_cpu_offload()
offload_strategy = AutoOffloadStrategy(memory_reserve_margin=memory_reserve_margin)
device = torch.device(device)
if device.index is None:
device = torch.device(f"{device.type}:{0}")
all_hooks = []
for name, component in self.components.items():
if isinstance(component, torch.nn.Module):
hook = custom_offload_with_hook(name, component, device, offload_strategy=offload_strategy)
all_hooks.append(hook)
for hook in all_hooks:
other_hooks = [h for h in all_hooks if h is not hook]
for other_hook in other_hooks:
if other_hook.hook.execution_device == hook.hook.execution_device:
hook.add_other_hook(other_hook)
self.model_hooks = all_hooks
self._auto_offload_enabled = True
self._auto_offload_device = device
def disable_auto_cpu_offload(self):
if self.model_hooks is None:
self._auto_offload_enabled = False
return
for hook in self.model_hooks:
hook.offload()
hook.remove()
if self.model_hooks:
clear_device_cache()
self.model_hooks = None
self._auto_offload_enabled = False
# YiYi TODO: add quantization info
def get_model_info(self, name: str, fields: Optional[Union[str, List[str]]] = None) -> Optional[Dict[str, Any]]:
"""Get comprehensive information about a component.
Args:
name: Name of the component to get info for
fields: Optional field(s) to return. Can be a string for single field or list of fields.
If None, returns all fields.
Returns:
Dictionary containing requested component metadata.
If fields is specified, returns only those fields.
If a single field is requested as string, returns just that field's value.
"""
if name not in self.components:
raise ValueError(f"Component '{name}' not found in ComponentsManager")
component = self.components[name]
# Build complete info dict first
info = {
"model_id": name,
"added_time": self.added_time[name],
"collection": next((coll for coll, comps in self.collections.items() if name in comps), None),
}
# Additional info for torch.nn.Module components
if isinstance(component, torch.nn.Module):
# Check for hook information
has_hook = hasattr(component, "_hf_hook")
execution_device = None
if has_hook and hasattr(component._hf_hook, "execution_device"):
execution_device = component._hf_hook.execution_device
info.update({
"class_name": component.__class__.__name__,
"size_gb": get_memory_footprint(component) / (1024**3),
"adapters": None, # Default to None
"has_hook": has_hook,
"execution_device": execution_device,
})
# Get adapters if applicable
if hasattr(component, "peft_config"):
info["adapters"] = list(component.peft_config.keys())
# Check for IP-Adapter scales
if hasattr(component, "_load_ip_adapter_weights") and hasattr(component, "attn_processors"):
processors = copy.deepcopy(component.attn_processors)
# First check if any processor is an IP-Adapter
processor_types = [v.__class__.__name__ for v in processors.values()]
if any("IPAdapter" in ptype for ptype in processor_types):
# Then get scales only from IP-Adapter processors
scales = {
k: v.scale
for k, v in processors.items()
if hasattr(v, "scale") and "IPAdapter" in v.__class__.__name__
}
if scales:
info["ip_adapter"] = summarize_dict_by_value_and_parts(scales)
# If fields specified, filter info
if fields is not None:
if isinstance(fields, str):
# Single field requested, return just that value
return {fields: info.get(fields)}
else:
# List of fields requested, return dict with just those fields
return {k: v for k, v in info.items() if k in fields}
return info
def __repr__(self):
# Helper to get simple name without UUID
def get_simple_name(name):
# Extract the base name by splitting on underscore and taking first part
# This assumes names are in format "name_uuid"
parts = name.split('_')
# If we have at least 2 parts and the last part looks like a UUID, remove it
if len(parts) > 1 and len(parts[-1]) >= 8 and '-' in parts[-1]:
return '_'.join(parts[:-1])
return name
# Extract load_id if available
def get_load_id(component):
if hasattr(component, "_diffusers_load_id"):
return component._diffusers_load_id
return "N/A"
# Format device info compactly
def format_device(component, info):
if not info["has_hook"]:
return str(getattr(component, 'device', 'N/A'))
else:
device = str(getattr(component, 'device', 'N/A'))
exec_device = str(info['execution_device'] or 'N/A')
return f"{device}({exec_device})"
# Get all simple names to calculate width
simple_names = [get_simple_name(id) for id in self.components.keys()]
# Get max length of load_ids for models
load_ids = [
get_load_id(component)
for component in self.components.values()
if isinstance(component, torch.nn.Module) and hasattr(component, "_diffusers_load_id")
]
max_load_id_len = max([15] + [len(str(lid)) for lid in load_ids]) if load_ids else 15
# Collection names
collection_names = [
next((coll for coll, comps in self.collections.items() if name in comps), "N/A")
for name in self.components.keys()
]
col_widths = {
"name": max(15, max(len(name) for name in simple_names)),
"class": max(25, max(len(component.__class__.__name__) for component in self.components.values())),
"device": 15, # Reduced since using more compact format
"dtype": 15,
"size": 10,
"load_id": max_load_id_len,
"collection": max(10, max(len(str(c)) for c in collection_names))
}
# Create the header lines
sep_line = "=" * (sum(col_widths.values()) + len(col_widths) * 3 - 1) + "\n"
dash_line = "-" * (sum(col_widths.values()) + len(col_widths) * 3 - 1) + "\n"
output = "Components:\n" + sep_line
# Separate components into models and others
models = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}
others = {k: v for k, v in self.components.items() if not isinstance(v, torch.nn.Module)}
# Models section
if models:
output += "Models:\n" + dash_line
# Column headers
output += f"{'Name':<{col_widths['name']}} | {'Class':<{col_widths['class']}} | "
output += f"{'Device':<{col_widths['device']}} | {'Dtype':<{col_widths['dtype']}} | "
output += f"{'Size (GB)':<{col_widths['size']}} | {'Load ID':<{col_widths['load_id']}} | Collection\n"
output += dash_line
# Model entries
for name, component in models.items():
info = self.get_model_info(name)
simple_name = get_simple_name(name)
device_str = format_device(component, info)
dtype = str(component.dtype) if hasattr(component, "dtype") else "N/A"
load_id = get_load_id(component)
collection = info["collection"] or "N/A"
output += f"{simple_name:<{col_widths['name']}} | {info['class_name']:<{col_widths['class']}} | "
output += f"{device_str:<{col_widths['device']}} | {dtype:<{col_widths['dtype']}} | "
output += f"{info['size_gb']:<{col_widths['size']}.2f} | {load_id:<{col_widths['load_id']}} | {collection}\n"
output += dash_line
# Other components section
if others:
if models: # Add extra newline if we had models section
output += "\n"
output += "Other Components:\n" + dash_line
# Column headers for other components
output += f"{'Name':<{col_widths['name']}} | {'Class':<{col_widths['class']}} | Collection\n"
output += dash_line
# Other component entries
for name, component in others.items():
info = self.get_model_info(name)
simple_name = get_simple_name(name)
collection = info["collection"] or "N/A"
output += f"{simple_name:<{col_widths['name']}} | {component.__class__.__name__:<{col_widths['class']}} | {collection}\n"
output += dash_line
# Add additional component info
output += "\nAdditional Component Info:\n" + "=" * 50 + "\n"
for name in self.components:
info = self.get_model_info(name)
if info is not None and (info.get("adapters") is not None or info.get("ip_adapter")):
simple_name = get_simple_name(name)
output += f"\n{simple_name}:\n"
if info.get("adapters") is not None:
output += f" Adapters: {info['adapters']}\n"
if info.get("ip_adapter"):
output += f" IP-Adapter: Enabled\n"
output += f" Added Time: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(info['added_time']))}\n"
return output
def from_pretrained(self, pretrained_model_name_or_path, prefix: Optional[str] = None, **kwargs):
"""
Load components from a pretrained model and add them to the manager.
Args:
pretrained_model_name_or_path (str): The path or identifier of the pretrained model
prefix (str, optional): Prefix to add to all component names loaded from this model.
If provided, components will be named as "{prefix}_{component_name}"
**kwargs: Additional arguments to pass to DiffusionPipeline.from_pretrained()
"""
subfolder = kwargs.pop("subfolder", None)
# YiYi TODO: extend AutoModel to support non-diffusers models
if subfolder:
from ..models import AutoModel
component = AutoModel.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder, **kwargs)
component_name = f"{prefix}_{subfolder}" if prefix else subfolder
if component_name not in self.components:
self.add(component_name, component)
else:
logger.warning(
f"Component '{component_name}' already exists in ComponentsManager and will not be added. To add it, either:\n"
f"1. remove the existing component with remove('{component_name}')\n"
f"2. Use a different prefix: add_from_pretrained(..., prefix='{prefix}_2')"
)
else:
from ..pipelines.pipeline_utils import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, **kwargs)
for name, component in pipe.components.items():
if component is None:
continue
# Add prefix if specified
component_name = f"{prefix}_{name}" if prefix else name
if component_name not in self.components:
self.add(component_name, component)
else:
logger.warning(
f"Component '{component_name}' already exists in ComponentsManager and will not be added. To add it, either:\n"
f"1. remove the existing component with remove('{component_name}')\n"
f"2. Use a different prefix: add_from_pretrained(..., prefix='{prefix}_2')"
)
def get_one(self, name: Optional[str] = None, collection: Optional[str] = None, load_id: Optional[str] = None) -> Any:
"""
Get a single component by name. Raises an error if multiple components match or none are found.
Args:
name: Component name or pattern
collection: Optional collection to filter by
load_id: Optional load_id to filter by
Returns:
A single component
Raises:
ValueError: If no components match or multiple components match
"""
results = self.get(name, collection, load_id)
if not results:
raise ValueError(f"No components found matching '{name}'")
if len(results) > 1:
raise ValueError(f"Multiple components found matching '{name}': {list(results.keys())}")
return next(iter(results.values()))
def summarize_dict_by_value_and_parts(d: Dict[str, Any]) -> Dict[str, Any]:
"""Summarizes a dictionary by finding common prefixes that share the same value.
For a dictionary with dot-separated keys like:
{
'down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor': [0.6],
'down_blocks.1.attentions.1.transformer_blocks.1.attn2.processor': [0.6],
'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor': [0.3],
}
Returns a dictionary where keys are the shortest common prefixes and values are their shared values:
{
'down_blocks': [0.6],
'up_blocks': [0.3]
}
"""
# First group by values - convert lists to tuples to make them hashable
value_to_keys = {}
for key, value in d.items():
value_tuple = tuple(value) if isinstance(value, list) else value
if value_tuple not in value_to_keys:
value_to_keys[value_tuple] = []
value_to_keys[value_tuple].append(key)
def find_common_prefix(keys: List[str]) -> str:
"""Find the shortest common prefix among a list of dot-separated keys."""
if not keys:
return ""
if len(keys) == 1:
return keys[0]
# Split all keys into parts
key_parts = [k.split('.') for k in keys]
# Find how many initial parts are common
common_length = 0
for parts in zip(*key_parts):
if len(set(parts)) == 1: # All parts at this position are the same
common_length += 1
else:
break
if common_length == 0:
return ""
# Return the common prefix
return '.'.join(key_parts[0][:common_length])
# Create summary by finding common prefixes for each value group
summary = {}
for value_tuple, keys in value_to_keys.items():
prefix = find_common_prefix(keys)
if prefix: # Only add if we found a common prefix
# Convert tuple back to list if it was originally a list
value = list(value_tuple) if isinstance(d[keys[0]], list) else value_tuple
summary[prefix] = value
else:
summary[""] = value # Use empty string if no common prefix
return summary