mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add initial LTX 2.0 video VAE tests (part 2)
This commit is contained in:
102
tests/models/autoencoders/test_models_autoencoder_ltx2_video.py
Normal file
102
tests/models/autoencoders/test_models_autoencoder_ltx2_video.py
Normal file
@@ -0,0 +1,102 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import AutoencoderKLLTX2Video
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
torch_device,
|
||||
)
|
||||
from ..test_modeling_common import ModelTesterMixin
|
||||
from .testing_utils import AutoencoderTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class AutoencoderKLLTX2VideoTests(ModelTesterMixin, AutoencoderTesterMixin, unittest.TestCase):
|
||||
model_class = AutoencoderKLLTX2Video
|
||||
main_input_name = "sample"
|
||||
base_precision = 1e-2
|
||||
|
||||
def get_autoencoder_kl_ltx_video_config(self):
|
||||
return {
|
||||
"in_channels": 3,
|
||||
"out_channels": 3,
|
||||
"latent_channels": 8,
|
||||
"block_out_channels": (8, 8, 8, 8),
|
||||
"decoder_block_out_channels": (16, 32, 64),
|
||||
"layers_per_block": (1, 1, 1, 1, 1),
|
||||
"decoder_layers_per_block": (1, 1, 1, 1),
|
||||
"spatio_temporal_scaling": (True, True, True, True),
|
||||
"decoder_spatio_temporal_scaling": (True, True, True),
|
||||
"decoder_inject_noise": (False, False, False, False),
|
||||
"downsample_type": ("spatial", "temporal", "spatiotemporal", "spatiotemporal"),
|
||||
"upsample_residual": (True, True, True),
|
||||
"upsample_factor": (2, 2, 2),
|
||||
"timestep_conditioning": False,
|
||||
"patch_size": 1,
|
||||
"patch_size_t": 1,
|
||||
"encoder_causal": True,
|
||||
"decoder_causal": True,
|
||||
}
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 2
|
||||
num_frames = 9
|
||||
num_channels = 3
|
||||
sizes = (16, 16)
|
||||
|
||||
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
|
||||
|
||||
input_dict = {"sample": image}
|
||||
return input_dict
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (3, 9, 16, 16)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (3, 9, 16, 16)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = self.get_autoencoder_kl_ltx_video_config()
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {
|
||||
"LTX2VideoEncoder3d",
|
||||
"LTX2VideoDecoder3d",
|
||||
"LTX2VideoDownBlock3D",
|
||||
"LTX2VideoMidBlock3d",
|
||||
"LTX2VideoUpBlock3d",
|
||||
}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
@unittest.skip("Unsupported test.")
|
||||
def test_outputs_equivalence(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("AutoencoderKLLTXVideo does not support `norm_num_groups` because it does not use GroupNorm.")
|
||||
def test_forward_with_norm_groups(self):
|
||||
pass
|
||||
Reference in New Issue
Block a user