1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

feat: cuda device_map for pipelines. (#12122)

* feat: cuda device_map for pipelines.

* up

* up

* empty

* up
This commit is contained in:
Sayak Paul
2025-08-14 10:31:24 +05:30
committed by GitHub
parent 421ee07e33
commit 46a0c6aa82
4 changed files with 38 additions and 7 deletions

View File

@@ -613,6 +613,9 @@ def _assign_components_to_devices(
def _get_final_device_map(device_map, pipeline_class, passed_class_obj, init_dict, library, max_memory, **kwargs):
# TODO: seperate out different device_map methods when it gets to it.
if device_map != "balanced":
return device_map
# To avoid circular import problem.
from diffusers import pipelines

View File

@@ -108,7 +108,7 @@ LIBRARIES = []
for library in LOADABLE_CLASSES:
LIBRARIES.append(library)
SUPPORTED_DEVICE_MAP = ["balanced"]
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device()]
logger = logging.get_logger(__name__)
@@ -988,12 +988,15 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
_maybe_warn_for_wrong_component_in_quant_config(init_dict, quantization_config)
for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
# 7.1 device_map shenanigans
if final_device_map is not None and len(final_device_map) > 0:
component_device = final_device_map.get(name, None)
if component_device is not None:
current_device_map = {"": component_device}
else:
current_device_map = None
if final_device_map is not None:
if isinstance(final_device_map, dict) and len(final_device_map) > 0:
component_device = final_device_map.get(name, None)
if component_device is not None:
current_device_map = {"": component_device}
else:
current_device_map = None
elif isinstance(final_device_map, str):
current_device_map = final_device_map
# 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
class_name = class_name[4:] if class_name.startswith("Flax") else class_name

View File

@@ -15,6 +15,7 @@
PyTorch utilities: Utilities related to PyTorch
"""
import functools
from typing import List, Optional, Tuple, Union
from . import logging
@@ -168,6 +169,7 @@ def get_torch_cuda_device_capability():
return None
@functools.lru_cache
def get_device():
if torch.cuda.is_available():
return "cuda"

View File

@@ -2339,6 +2339,29 @@ class PipelineTesterMixin:
f"Component '{name}' has dtype {component.dtype} but expected {expected_dtype}",
)
@require_torch_accelerator
def test_pipeline_with_accelerator_device_map(self, expected_max_difference=1e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
torch.manual_seed(0)
inputs = self.get_dummy_inputs(torch_device)
inputs["generator"] = torch.manual_seed(0)
out = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
loaded_pipe = self.pipeline_class.from_pretrained(tmpdir, device_map=torch_device)
for component in loaded_pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
inputs["generator"] = torch.manual_seed(0)
loaded_out = loaded_pipe(**inputs)[0]
max_diff = np.abs(to_np(out) - to_np(loaded_out)).max()
self.assertLess(max_diff, expected_max_difference)
@is_staging_test
class PipelinePushToHubTester(unittest.TestCase):