mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
adapt test
This commit is contained in:
@@ -36,7 +36,8 @@ class LatentDiffusionUncondPipeline(DiffusionPipeline):
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
for t in tqdm.tqdm(self.scheduler.timesteps):
|
||||
model_output = self.unet(image, t)
|
||||
with torch.no_grad():
|
||||
model_output = self.unet(image, t)
|
||||
|
||||
if isinstance(model_output, dict):
|
||||
model_output = model_output["sample"]
|
||||
@@ -46,5 +47,6 @@ class LatentDiffusionUncondPipeline(DiffusionPipeline):
|
||||
image = self.scheduler.step(model_output, t, image, eta)["prev_sample"]
|
||||
|
||||
# decode image with vae
|
||||
image = self.vqvae.decode(image)
|
||||
with torch.no_grad():
|
||||
image = self.vqvae.decode(image)
|
||||
return {"sample": image}
|
||||
|
||||
@@ -1070,7 +1070,8 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||
|
||||
@slow
|
||||
def test_ldm_uncond(self):
|
||||
ldm = LatentDiffusionUncondPipeline.from_pretrained("fusing/latent-diffusion-celeba-256", ldm=True)
|
||||
# ldm = LatentDiffusionUncondPipeline.from_pretrained("fusing/latent-diffusion-celeba-256", ldm=True)
|
||||
ldm = LatentDiffusionUncondPipeline.from_pretrained("CompVis/latent-diffusion-celeba-256")
|
||||
|
||||
generator = torch.manual_seed(0)
|
||||
image = ldm(generator=generator, num_inference_steps=5)["sample"]
|
||||
|
||||
Reference in New Issue
Block a user