mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Fix "push_to_hub only create repo in consistency model lora SDXL training script" (#6102)
* fix * style fix --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
This commit is contained in:
@@ -38,7 +38,7 @@ from accelerate import Accelerator
|
||||
from accelerate.logging import get_logger
|
||||
from accelerate.utils import ProjectConfiguration, set_seed
|
||||
from braceexpand import braceexpand
|
||||
from huggingface_hub import create_repo
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
from packaging import version
|
||||
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict
|
||||
from torch.utils.data import default_collate
|
||||
@@ -847,7 +847,7 @@ def main(args):
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
if args.push_to_hub:
|
||||
create_repo(
|
||||
repo_id = create_repo(
|
||||
repo_id=args.hub_model_id or Path(args.output_dir).name,
|
||||
exist_ok=True,
|
||||
token=args.hub_token,
|
||||
@@ -1366,6 +1366,14 @@ def main(args):
|
||||
lora_state_dict = get_peft_model_state_dict(unet, adapter_name="default")
|
||||
StableDiffusionPipeline.save_lora_weights(os.path.join(args.output_dir, "unet_lora"), lora_state_dict)
|
||||
|
||||
if args.push_to_hub:
|
||||
upload_folder(
|
||||
repo_id=repo_id,
|
||||
folder_path=args.output_dir,
|
||||
commit_message="End of training",
|
||||
ignore_patterns=["step_*", "epoch_*"],
|
||||
)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
||||
|
||||
@@ -39,7 +39,7 @@ from accelerate import Accelerator
|
||||
from accelerate.logging import get_logger
|
||||
from accelerate.utils import ProjectConfiguration, set_seed
|
||||
from braceexpand import braceexpand
|
||||
from huggingface_hub import create_repo
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
from packaging import version
|
||||
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict
|
||||
from torch.utils.data import default_collate
|
||||
@@ -842,7 +842,7 @@ def main(args):
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
if args.push_to_hub:
|
||||
create_repo(
|
||||
repo_id = create_repo(
|
||||
repo_id=args.hub_model_id or Path(args.output_dir).name,
|
||||
exist_ok=True,
|
||||
token=args.hub_token,
|
||||
@@ -1424,6 +1424,14 @@ def main(args):
|
||||
lora_state_dict = get_peft_model_state_dict(unet, adapter_name="default")
|
||||
StableDiffusionXLPipeline.save_lora_weights(os.path.join(args.output_dir, "unet_lora"), lora_state_dict)
|
||||
|
||||
if args.push_to_hub:
|
||||
upload_folder(
|
||||
repo_id=repo_id,
|
||||
folder_path=args.output_dir,
|
||||
commit_message="End of training",
|
||||
ignore_patterns=["step_*", "epoch_*"],
|
||||
)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
||||
|
||||
@@ -38,7 +38,7 @@ from accelerate import Accelerator
|
||||
from accelerate.logging import get_logger
|
||||
from accelerate.utils import ProjectConfiguration, set_seed
|
||||
from braceexpand import braceexpand
|
||||
from huggingface_hub import create_repo
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
from packaging import version
|
||||
from torch.utils.data import default_collate
|
||||
from torchvision import transforms
|
||||
@@ -835,7 +835,7 @@ def main(args):
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
if args.push_to_hub:
|
||||
create_repo(
|
||||
repo_id = create_repo(
|
||||
repo_id=args.hub_model_id or Path(args.output_dir).name,
|
||||
exist_ok=True,
|
||||
token=args.hub_token,
|
||||
@@ -1354,6 +1354,14 @@ def main(args):
|
||||
target_unet = accelerator.unwrap_model(target_unet)
|
||||
target_unet.save_pretrained(os.path.join(args.output_dir, "unet_target"))
|
||||
|
||||
if args.push_to_hub:
|
||||
upload_folder(
|
||||
repo_id=repo_id,
|
||||
folder_path=args.output_dir,
|
||||
commit_message="End of training",
|
||||
ignore_patterns=["step_*", "epoch_*"],
|
||||
)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
||||
|
||||
@@ -39,7 +39,7 @@ from accelerate import Accelerator
|
||||
from accelerate.logging import get_logger
|
||||
from accelerate.utils import ProjectConfiguration, set_seed
|
||||
from braceexpand import braceexpand
|
||||
from huggingface_hub import create_repo
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
from packaging import version
|
||||
from torch.utils.data import default_collate
|
||||
from torchvision import transforms
|
||||
@@ -875,7 +875,7 @@ def main(args):
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
if args.push_to_hub:
|
||||
create_repo(
|
||||
repo_id = create_repo(
|
||||
repo_id=args.hub_model_id or Path(args.output_dir).name,
|
||||
exist_ok=True,
|
||||
token=args.hub_token,
|
||||
@@ -1457,6 +1457,14 @@ def main(args):
|
||||
target_unet = accelerator.unwrap_model(target_unet)
|
||||
target_unet.save_pretrained(os.path.join(args.output_dir, "unet_target"))
|
||||
|
||||
if args.push_to_hub:
|
||||
upload_folder(
|
||||
repo_id=repo_id,
|
||||
folder_path=args.output_dir,
|
||||
commit_message="End of training",
|
||||
ignore_patterns=["step_*", "epoch_*"],
|
||||
)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user