1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

[Init] Make sure shape mismatches are caught early (#2847)

Improve init
This commit is contained in:
Patrick von Platen
2023-03-28 10:08:28 +02:00
committed by GitHub
parent 81125d8499
commit 42d950174f
2 changed files with 31 additions and 0 deletions

View File

@@ -579,10 +579,17 @@ class ModelMixin(torch.nn.Module):
" those weights or else make sure your checkpoint file is correct."
)
empty_state_dict = model.state_dict()
for param_name, param in state_dict.items():
accepts_dtype = "dtype" in set(
inspect.signature(set_module_tensor_to_device).parameters.keys()
)
if empty_state_dict[param_name].shape != param.shape:
raise ValueError(
f"Cannot load {pretrained_model_name_or_path} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
)
if accepts_dtype:
set_module_tensor_to_device(
model, param_name, param_device, value=param, dtype=torch_dtype

View File

@@ -100,6 +100,30 @@ class ModelUtilsTest(unittest.TestCase):
diffusers.utils.import_utils._safetensors_available = True
def test_weight_overwrite(self):
with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
in_channels=9,
)
# make sure that error message states what keys are missing
assert "Cannot load" in str(error_context.exception)
with tempfile.TemporaryDirectory() as tmpdirname:
model = UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
in_channels=9,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True,
)
assert model.config.in_channels == 9
class ModelTesterMixin:
def test_from_save_pretrained(self):