1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[LoRA] Support Wan (#10943)

* update

* refactor image-to-video pipeline

* update

* fix copied from

* use FP32LayerNorm
This commit is contained in:
Aryan
2025-03-05 01:27:34 +05:30
committed by GitHub
parent dcd77ce222
commit 3ee899fa0c
9 changed files with 584 additions and 85 deletions

View File

@@ -74,6 +74,7 @@ if is_torch_available():
"HunyuanVideoLoraLoaderMixin",
"SanaLoraLoaderMixin",
"Lumina2LoraLoaderMixin",
"WanLoraLoaderMixin",
]
_import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
_import_structure["ip_adapter"] = [
@@ -112,6 +113,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
SD3LoraLoaderMixin,
StableDiffusionLoraLoaderMixin,
StableDiffusionXLLoraLoaderMixin,
WanLoraLoaderMixin,
)
from .single_file import FromSingleFileMixin
from .textual_inversion import TextualInversionLoaderMixin

View File

@@ -4115,6 +4115,311 @@ class Lumina2LoraLoaderMixin(LoraBaseMixin):
super().unfuse_lora(components=components)
class WanLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`WanPipeline`] and `[WanImageToVideoPipeline`].
"""
_lora_loadable_modules = ["transformer"]
transformer_name = TRANSFORMER_NAME
@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
return state_dict
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->WanTransformer3DModel
def load_lora_into_transformer(
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`WanTransformer3DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=None,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not transformer_lora_layers:
raise ValueError("You must pass `transformer_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
def fuse_lora(
self,
components: List[str] = ["transformer"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
"""
super().unfuse_lora(components=components)
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
def __init__(self, *args, **kwargs):
deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."

View File

@@ -53,6 +53,7 @@ _SET_ADAPTER_SCALE_FN_MAPPING = {
"LTXVideoTransformer3DModel": lambda model_cls, weights: weights,
"SanaTransformer2DModel": lambda model_cls, weights: weights,
"Lumina2Transformer2DModel": lambda model_cls, weights: weights,
"WanTransformer3DModel": lambda model_cls, weights: weights,
}

View File

@@ -13,14 +13,15 @@
# limitations under the License.
import math
from typing import Dict, Optional, Tuple, Union
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ..attention import FeedForward
from ..attention_processor import Attention
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
@@ -109,9 +110,9 @@ class WanImageEmbedding(torch.nn.Module):
def __init__(self, in_features: int, out_features: int):
super().__init__()
self.norm1 = nn.LayerNorm(in_features)
self.norm1 = FP32LayerNorm(in_features)
self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu")
self.norm2 = nn.LayerNorm(out_features)
self.norm2 = FP32LayerNorm(out_features)
def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor:
hidden_states = self.norm1(encoder_hidden_states_image)
@@ -287,7 +288,7 @@ class WanTransformerBlock(nn.Module):
return hidden_states
class WanTransformer3DModel(ModelMixin, ConfigMixin):
class WanTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
r"""
A Transformer model for video-like data used in the Wan model.
@@ -391,7 +392,23 @@ class WanTransformer3DModel(ModelMixin, ConfigMixin):
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
@@ -432,6 +449,10 @@ class WanTransformer3DModel(ModelMixin, ConfigMixin):
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -13,7 +13,7 @@
# limitations under the License.
import html
from typing import Callable, Dict, List, Optional, Union
from typing import Any, Callable, Dict, List, Optional, Union
import ftfy
import regex as re
@@ -21,6 +21,7 @@ import torch
from transformers import AutoTokenizer, UMT5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...loaders import WanLoraLoaderMixin
from ...models import AutoencoderKLWan, WanTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
@@ -86,7 +87,7 @@ def prompt_clean(text):
return text
class WanPipeline(DiffusionPipeline):
class WanPipeline(DiffusionPipeline, WanLoraLoaderMixin):
r"""
Pipeline for text-to-video generation using Wan.
@@ -299,10 +300,10 @@ class WanPipeline(DiffusionPipeline):
def prepare_latents(
self,
batch_size: int,
num_channels_latents: 16,
height: int = 720,
width: int = 1280,
num_latent_frames: int = 21,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
@@ -311,6 +312,7 @@ class WanPipeline(DiffusionPipeline):
if latents is not None:
return latents.to(device=device, dtype=dtype)
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
shape = (
batch_size,
num_channels_latents,
@@ -347,14 +349,18 @@ class WanPipeline(DiffusionPipeline):
def interrupt(self):
return self._interrupt
@property
def attention_kwargs(self):
return self._attention_kwargs
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
height: int = 720,
width: int = 1280,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
@@ -365,6 +371,7 @@ class WanPipeline(DiffusionPipeline):
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
@@ -378,11 +385,11 @@ class WanPipeline(DiffusionPipeline):
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, defaults to `720`):
height (`int`, defaults to `480`):
The height in pixels of the generated image.
width (`int`, defaults to `1280`):
width (`int`, defaults to `832`):
The width in pixels of the generated image.
num_frames (`int`, defaults to `129`):
num_frames (`int`, defaults to `81`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
@@ -409,6 +416,10 @@ class WanPipeline(DiffusionPipeline):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
@@ -445,6 +456,7 @@ class WanPipeline(DiffusionPipeline):
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
@@ -481,14 +493,12 @@ class WanPipeline(DiffusionPipeline):
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
num_frames,
torch.float32,
device,
generator,
@@ -512,6 +522,7 @@ class WanPipeline(DiffusionPipeline):
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
@@ -520,6 +531,7 @@ class WanPipeline(DiffusionPipeline):
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)

View File

@@ -13,17 +13,17 @@
# limitations under the License.
import html
from typing import Callable, Dict, List, Optional, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import ftfy
import numpy as np
import PIL
import regex as re
import torch
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection, UMT5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput
from ...loaders import WanLoraLoaderMixin
from ...models import AutoencoderKLWan, WanTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
@@ -103,7 +103,7 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
class WanImageToVideoPipeline(DiffusionPipeline):
class WanImageToVideoPipeline(DiffusionPipeline, WanLoraLoaderMixin):
r"""
Pipeline for image-to-video generation using Wan.
@@ -137,7 +137,7 @@ class WanImageToVideoPipeline(DiffusionPipeline):
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
image_encoder: CLIPVisionModel,
image_encoder: CLIPVisionModelWithProjection,
image_processor: CLIPImageProcessor,
transformer: WanTransformer3DModel,
vae: AutoencoderKLWan,
@@ -164,7 +164,7 @@ class WanImageToVideoPipeline(DiffusionPipeline):
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
max_sequence_length: int = 512,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
@@ -291,15 +291,18 @@ class WanImageToVideoPipeline(DiffusionPipeline):
def check_inputs(
self,
prompt,
negative_prompt,
image,
max_area,
height,
width,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
raise ValueError("`image` has to be of type `torch.Tensor` or `PIL.Image.Image` but is" f" {type(image)}")
if max_area < 0:
raise ValueError(f"`max_area` has to be positive but are {max_area}.")
if height % 16 != 0 or width % 16 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
@@ -313,80 +316,70 @@ class WanImageToVideoPipeline(DiffusionPipeline):
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif negative_prompt is not None and (
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
def prepare_latents(
self,
image: PipelineImageInput,
batch_size: int,
num_channels_latents: 32,
height: int = 720,
width: int = 1280,
max_area: int = 720 * 1280,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_latent_frames: int = 21,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
aspect_ratio = height / width
mod_value = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latent_height = height // self.vae_scale_factor_spatial
latent_width = width // self.vae_scale_factor_spatial
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
num_latent_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
image = self.video_processor.preprocess(image, height=height, width=width)[:, :, None]
image = image.unsqueeze(2)
video_condition = torch.cat(
[image, torch.zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
[image, image.new_zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
)
video_condition = video_condition.to(device=device, dtype=dtype)
if isinstance(generator, list):
latent_condition = [retrieve_latents(self.vae.encode(video_condition), g) for g in generator]
latents = latent_condition = torch.cat(latent_condition)
else:
latent_condition = retrieve_latents(self.vae.encode(video_condition), generator)
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
mask_lat_size = torch.ones(
batch_size,
1,
num_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, num_frames))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(
batch_size,
-1,
self.vae_scale_factor_temporal,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
mask_lat_size = mask_lat_size.view(batch_size, -1, self.vae_scale_factor_temporal, latent_height, latent_width)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(latent_condition.device)
@@ -412,6 +405,10 @@ class WanImageToVideoPipeline(DiffusionPipeline):
def interrupt(self):
return self._interrupt
@property
def attention_kwargs(self):
return self._attention_kwargs
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -419,7 +416,8 @@ class WanImageToVideoPipeline(DiffusionPipeline):
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
max_area: int = 720 * 1280,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
@@ -430,6 +428,7 @@ class WanImageToVideoPipeline(DiffusionPipeline):
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
@@ -445,9 +444,15 @@ class WanImageToVideoPipeline(DiffusionPipeline):
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
max_area (`int`, defaults to `1280 * 720`):
The maximum area in pixels of the generated image.
num_frames (`int`, defaults to `129`):
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, defaults to `480`):
The height of the generated video.
width (`int`, defaults to `832`):
The width of the generated video.
num_frames (`int`, defaults to `81`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
@@ -474,6 +479,10 @@ class WanImageToVideoPipeline(DiffusionPipeline):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
@@ -504,13 +513,17 @@ class WanImageToVideoPipeline(DiffusionPipeline):
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
image,
max_area,
height,
width,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
@@ -537,36 +550,29 @@ class WanImageToVideoPipeline(DiffusionPipeline):
)
# Encode image embedding
image_embeds = self.encode_image(image)
image_embeds = image_embeds.repeat(batch_size, 1, 1)
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
image_embeds = self.encode_image(image)
image_embeds = image_embeds.repeat(batch_size, 1, 1)
image_embeds = image_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
if isinstance(image, torch.Tensor):
height, width = image.shape[-2:]
else:
width, height = image.size
# 5. Prepare latent variables
num_channels_latents = self.vae.config.z_dim
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
latents, condition = self.prepare_latents(
image,
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
max_area,
num_frames,
num_latent_frames,
torch.float32,
device,
generator,
@@ -591,6 +597,7 @@ class WanImageToVideoPipeline(DiffusionPipeline):
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
@@ -600,6 +607,7 @@ class WanImageToVideoPipeline(DiffusionPipeline):
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)

View File

@@ -0,0 +1,143 @@
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLWan,
FlowMatchEulerDiscreteScheduler,
WanPipeline,
WanTransformer3DModel,
)
from diffusers.utils.testing_utils import (
floats_tensor,
require_peft_backend,
skip_mps,
)
sys.path.append(".")
from utils import PeftLoraLoaderMixinTests # noqa: E402
@require_peft_backend
@skip_mps
class WanLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = WanPipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
scheduler_kwargs = {}
transformer_kwargs = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
"in_channels": 16,
"out_channels": 16,
"text_dim": 32,
"freq_dim": 256,
"ffn_dim": 32,
"num_layers": 2,
"cross_attn_norm": True,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
}
transformer_cls = WanTransformer3DModel
vae_kwargs = {
"base_dim": 3,
"z_dim": 16,
"dim_mult": [1, 1, 1, 1],
"num_res_blocks": 1,
"temperal_downsample": [False, True, True],
}
vae_cls = AutoencoderKLWan
has_two_text_encoders = True
tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
text_encoder_target_modules = ["q", "k", "v", "o"]
@property
def output_shape(self):
return (1, 9, 32, 32, 3)
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 16
num_channels = 4
num_frames = 9
num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
sizes = (4, 4)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "",
"num_frames": num_frames,
"num_inference_steps": 1,
"guidance_scale": 6.0,
"height": 32,
"width": 32,
"max_sequence_length": sequence_length,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
def test_simple_inference_with_text_denoiser_lora_unfused(self):
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
@unittest.skip("Not supported in Wan.")
def test_simple_inference_with_text_denoiser_block_scale(self):
pass
@unittest.skip("Not supported in Wan.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
@unittest.skip("Not supported in Wan.")
def test_modify_padding_mode(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan.")
def test_simple_inference_with_partial_text_lora(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan.")
def test_simple_inference_with_text_lora(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan.")
def test_simple_inference_with_text_lora_and_scale(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan.")
def test_simple_inference_with_text_lora_fused(self):
pass
@unittest.skip("Text encoder LoRA is not supported in Wan.")
def test_simple_inference_with_text_lora_save_load(self):
pass

View File

@@ -1594,11 +1594,17 @@ class PeftLoraLoaderMixinTests:
].weight += float("inf")
else:
named_modules = [name for name, _ in pipe.transformer.named_modules()]
tower_name = (
"transformer_blocks"
if any(name == "transformer_blocks" for name in named_modules)
else "blocks"
)
transformer_tower = getattr(pipe.transformer, tower_name)
has_attn1 = any("attn1" in name for name in named_modules)
if has_attn1:
pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")
transformer_tower[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")
else:
pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
transformer_tower[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
# with `safe_fusing=True` we should see an Error
with self.assertRaises(ValueError):

View File

@@ -125,7 +125,8 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
"image": image,
"prompt": "dance monkey",
"negative_prompt": "negative", # TODO
"max_area": 1024,
"height": image_height,
"width": image_width,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
@@ -147,8 +148,8 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
expected_video = torch.randn(9, 3, 32, 32)
self.assertEqual(generated_video.shape, (9, 3, 16, 16))
expected_video = torch.randn(9, 3, 16, 16)
max_diff = np.abs(generated_video - expected_video).max()
self.assertLessEqual(max_diff, 1e10)