mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Extend Support for callback_on_step_end for AuraFlow and LuminaText2Img Pipelines (#10746)
* Add support for callback_on_step_end for AuraFlowPipeline and LuminaText2ImgPipeline. * Apply the suggestions from code review for lumina and auraflow Co-authored-by: hlky <hlky@hlky.ac> * Update missing inputs and imports. * Add input field. * Apply suggestions from code review-2 Co-authored-by: hlky <hlky@hlky.ac> * Apply the suggestions from review for unused imports. Co-authored-by: hlky <hlky@hlky.ac> * make style. * Update pipeline_aura_flow.py * Update pipeline_lumina.py * Update pipeline_lumina.py * Update pipeline_aura_flow.py * Update pipeline_lumina.py --------- Co-authored-by: hlky <hlky@hlky.ac>
This commit is contained in:
@@ -12,11 +12,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import inspect
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import T5Tokenizer, UMT5EncoderModel
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...models import AuraFlowTransformer2DModel, AutoencoderKL
|
||||
from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
|
||||
@@ -131,6 +132,10 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -159,12 +164,19 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds=None,
|
||||
prompt_attention_mask=None,
|
||||
negative_prompt_attention_mask=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
):
|
||||
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
||||
raise ValueError(
|
||||
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}."
|
||||
)
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
@@ -387,6 +399,14 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
self.vae.decoder.conv_in.to(dtype)
|
||||
self.vae.decoder.mid_block.to(dtype)
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
@@ -408,6 +428,10 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
max_sequence_length: int = 256,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
) -> Union[ImagePipelineOutput, Tuple]:
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
@@ -462,6 +486,15 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
@@ -483,8 +516,11 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_attention_mask,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
|
||||
# 2. Determine batch size.
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
@@ -541,6 +577,7 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
|
||||
# 6. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
@@ -567,6 +604,15 @@ class AuraFlowPipeline(DiffusionPipeline):
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
@@ -17,11 +17,12 @@ import inspect
|
||||
import math
|
||||
import re
|
||||
import urllib.parse as ul
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...models import AutoencoderKL
|
||||
from ...models.embeddings import get_2d_rotary_pos_embed_lumina
|
||||
@@ -174,6 +175,10 @@ class LuminaText2ImgPipeline(DiffusionPipeline):
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -395,12 +400,20 @@ class LuminaText2ImgPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds=None,
|
||||
prompt_attention_mask=None,
|
||||
negative_prompt_attention_mask=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
):
|
||||
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
||||
raise ValueError(
|
||||
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}."
|
||||
)
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
@@ -644,6 +657,10 @@ class LuminaText2ImgPipeline(DiffusionPipeline):
|
||||
max_sequence_length: int = 256,
|
||||
scaling_watershed: Optional[float] = 1.0,
|
||||
proportional_attn: Optional[bool] = True,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
) -> Union[ImagePipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
@@ -735,7 +752,11 @@ class LuminaText2ImgPipeline(DiffusionPipeline):
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
|
||||
cross_attention_kwargs = {}
|
||||
|
||||
# 2. Define call parameters
|
||||
@@ -797,6 +818,8 @@ class LuminaText2ImgPipeline(DiffusionPipeline):
|
||||
latents,
|
||||
)
|
||||
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
@@ -886,6 +909,15 @@ class LuminaText2ImgPipeline(DiffusionPipeline):
|
||||
|
||||
progress_bar.update()
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user