mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
up
This commit is contained in:
@@ -35,8 +35,11 @@ from ..utils import (
|
||||
deprecate,
|
||||
get_adapter_name,
|
||||
is_accelerate_available,
|
||||
is_bitsandbytes_available,
|
||||
is_gguf_available,
|
||||
is_peft_available,
|
||||
is_peft_version,
|
||||
is_torch_version,
|
||||
is_transformers_available,
|
||||
is_transformers_version,
|
||||
logging,
|
||||
@@ -64,6 +67,20 @@ LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
||||
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
||||
LORA_ADAPTER_METADATA_KEY = "lora_adapter_metadata"
|
||||
|
||||
TEXT_ENCODER_NAME = "text_encoder"
|
||||
UNET_NAME = "unet"
|
||||
TRANSFORMER_NAME = "transformer"
|
||||
|
||||
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
|
||||
if is_torch_version(">=", "1.9.0"):
|
||||
if (
|
||||
is_peft_available()
|
||||
and is_peft_version(">=", "0.13.1")
|
||||
and is_transformers_available()
|
||||
and is_transformers_version(">", "4.45.2")
|
||||
):
|
||||
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = True
|
||||
|
||||
|
||||
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
|
||||
"""
|
||||
@@ -475,6 +492,55 @@ def _func_optionally_disable_offloading(_pipeline):
|
||||
return (is_model_cpu_offload, is_sequential_cpu_offload, is_group_offload)
|
||||
|
||||
|
||||
def _maybe_dequantize_weight_for_expanded_lora(model, module):
|
||||
if is_bitsandbytes_available():
|
||||
from ..quantizers.bitsandbytes import dequantize_bnb_weight
|
||||
|
||||
if is_gguf_available():
|
||||
from ..quantizers.gguf.utils import dequantize_gguf_tensor
|
||||
|
||||
is_bnb_4bit_quantized = module.weight.__class__.__name__ == "Params4bit"
|
||||
is_bnb_8bit_quantized = module.weight.__class__.__name__ == "Int8Params"
|
||||
is_gguf_quantized = module.weight.__class__.__name__ == "GGUFParameter"
|
||||
|
||||
if is_bnb_4bit_quantized and not is_bitsandbytes_available():
|
||||
raise ValueError(
|
||||
"The checkpoint seems to have been quantized with `bitsandbytes` (4bits). Install `bitsandbytes` to load quantized checkpoints."
|
||||
)
|
||||
if is_bnb_8bit_quantized and not is_bitsandbytes_available():
|
||||
raise ValueError(
|
||||
"The checkpoint seems to have been quantized with `bitsandbytes` (8bits). Install `bitsandbytes` to load quantized checkpoints."
|
||||
)
|
||||
if is_gguf_quantized and not is_gguf_available():
|
||||
raise ValueError(
|
||||
"The checkpoint seems to have been quantized with `gguf`. Install `gguf` to load quantized checkpoints."
|
||||
)
|
||||
|
||||
weight_on_cpu = False
|
||||
if module.weight.device.type == "cpu":
|
||||
weight_on_cpu = True
|
||||
|
||||
device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
|
||||
if is_bnb_4bit_quantized or is_bnb_8bit_quantized:
|
||||
module_weight = dequantize_bnb_weight(
|
||||
module.weight.to(device) if weight_on_cpu else module.weight,
|
||||
state=module.weight.quant_state if is_bnb_4bit_quantized else module.state,
|
||||
dtype=model.dtype,
|
||||
).data
|
||||
elif is_gguf_quantized:
|
||||
module_weight = dequantize_gguf_tensor(
|
||||
module.weight.to(device) if weight_on_cpu else module.weight,
|
||||
)
|
||||
module_weight = module_weight.to(model.dtype)
|
||||
else:
|
||||
module_weight = module.weight.data
|
||||
|
||||
if weight_on_cpu:
|
||||
module_weight = module_weight.cpu()
|
||||
|
||||
return module_weight
|
||||
|
||||
|
||||
class LoraBaseMixin:
|
||||
"""Utility class for handling LoRAs."""
|
||||
|
||||
|
||||
@@ -21,29 +21,24 @@ from huggingface_hub.utils import validate_hf_hub_args
|
||||
from ..utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
deprecate,
|
||||
get_submodule_by_name,
|
||||
is_bitsandbytes_available,
|
||||
is_gguf_available,
|
||||
is_peft_available,
|
||||
is_peft_version,
|
||||
is_torch_version,
|
||||
is_transformers_available,
|
||||
is_transformers_version,
|
||||
logging,
|
||||
)
|
||||
from .lora_base import ( # noqa
|
||||
_LOW_CPU_MEM_USAGE_DEFAULT_LORA,
|
||||
LORA_WEIGHT_NAME,
|
||||
LORA_WEIGHT_NAME_SAFE,
|
||||
TEXT_ENCODER_NAME,
|
||||
TRANSFORMER_NAME,
|
||||
UNET_NAME,
|
||||
LoraBaseMixin,
|
||||
_fetch_state_dict,
|
||||
_load_lora_into_text_encoder,
|
||||
_maybe_dequantize_weight_for_expanded_lora,
|
||||
_pack_dict_with_prefix,
|
||||
)
|
||||
from .lora_conversion_utils import (
|
||||
_convert_bfl_flux_control_lora_to_diffusers,
|
||||
_convert_fal_kontext_lora_to_diffusers,
|
||||
_convert_hunyuan_video_lora_to_diffusers,
|
||||
_convert_kohya_flux_lora_to_diffusers,
|
||||
_convert_musubi_wan_lora_to_diffusers,
|
||||
_convert_non_diffusers_flux2_lora_to_diffusers,
|
||||
_convert_non_diffusers_hidream_lora_to_diffusers,
|
||||
@@ -53,79 +48,12 @@ from .lora_conversion_utils import (
|
||||
_convert_non_diffusers_qwen_lora_to_diffusers,
|
||||
_convert_non_diffusers_wan_lora_to_diffusers,
|
||||
_convert_non_diffusers_z_image_lora_to_diffusers,
|
||||
_convert_xlabs_flux_lora_to_diffusers,
|
||||
_maybe_map_sgm_blocks_to_diffusers,
|
||||
)
|
||||
|
||||
|
||||
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
|
||||
if is_torch_version(">=", "1.9.0"):
|
||||
if (
|
||||
is_peft_available()
|
||||
and is_peft_version(">=", "0.13.1")
|
||||
and is_transformers_available()
|
||||
and is_transformers_version(">", "4.45.2")
|
||||
):
|
||||
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = True
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
TEXT_ENCODER_NAME = "text_encoder"
|
||||
UNET_NAME = "unet"
|
||||
TRANSFORMER_NAME = "transformer"
|
||||
|
||||
_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}
|
||||
|
||||
|
||||
def _maybe_dequantize_weight_for_expanded_lora(model, module):
|
||||
if is_bitsandbytes_available():
|
||||
from ..quantizers.bitsandbytes import dequantize_bnb_weight
|
||||
|
||||
if is_gguf_available():
|
||||
from ..quantizers.gguf.utils import dequantize_gguf_tensor
|
||||
|
||||
is_bnb_4bit_quantized = module.weight.__class__.__name__ == "Params4bit"
|
||||
is_bnb_8bit_quantized = module.weight.__class__.__name__ == "Int8Params"
|
||||
is_gguf_quantized = module.weight.__class__.__name__ == "GGUFParameter"
|
||||
|
||||
if is_bnb_4bit_quantized and not is_bitsandbytes_available():
|
||||
raise ValueError(
|
||||
"The checkpoint seems to have been quantized with `bitsandbytes` (4bits). Install `bitsandbytes` to load quantized checkpoints."
|
||||
)
|
||||
if is_bnb_8bit_quantized and not is_bitsandbytes_available():
|
||||
raise ValueError(
|
||||
"The checkpoint seems to have been quantized with `bitsandbytes` (8bits). Install `bitsandbytes` to load quantized checkpoints."
|
||||
)
|
||||
if is_gguf_quantized and not is_gguf_available():
|
||||
raise ValueError(
|
||||
"The checkpoint seems to have been quantized with `gguf`. Install `gguf` to load quantized checkpoints."
|
||||
)
|
||||
|
||||
weight_on_cpu = False
|
||||
if module.weight.device.type == "cpu":
|
||||
weight_on_cpu = True
|
||||
|
||||
device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
|
||||
if is_bnb_4bit_quantized or is_bnb_8bit_quantized:
|
||||
module_weight = dequantize_bnb_weight(
|
||||
module.weight.to(device) if weight_on_cpu else module.weight,
|
||||
state=module.weight.quant_state if is_bnb_4bit_quantized else module.state,
|
||||
dtype=model.dtype,
|
||||
).data
|
||||
elif is_gguf_quantized:
|
||||
module_weight = dequantize_gguf_tensor(
|
||||
module.weight.to(device) if weight_on_cpu else module.weight,
|
||||
)
|
||||
module_weight = module_weight.to(model.dtype)
|
||||
else:
|
||||
module_weight = module.weight.data
|
||||
|
||||
if weight_on_cpu:
|
||||
module_weight = module_weight.cpu()
|
||||
|
||||
return module_weight
|
||||
|
||||
|
||||
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
|
||||
r"""
|
||||
@@ -1483,802 +1411,15 @@ class AuraFlowLoraLoaderMixin(LoraBaseMixin):
|
||||
|
||||
|
||||
class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
r"""
|
||||
Load LoRA layers into [`FluxTransformer2DModel`],
|
||||
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
|
||||
|
||||
Specific to [`StableDiffusion3Pipeline`].
|
||||
"""
|
||||
|
||||
_lora_loadable_modules = ["transformer", "text_encoder"]
|
||||
transformer_name = TRANSFORMER_NAME
|
||||
text_encoder_name = TEXT_ENCODER_NAME
|
||||
_control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def lora_state_dict(
|
||||
cls,
|
||||
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
||||
return_alphas: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
|
||||
"""
|
||||
# Load the main state dict first which has the LoRA layers for either of
|
||||
# transformer and text encoder or both.
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
weight_name = kwargs.pop("weight_name", None)
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
return_lora_metadata = kwargs.pop("return_lora_metadata", False)
|
||||
|
||||
allow_pickle = False
|
||||
if use_safetensors is None:
|
||||
use_safetensors = True
|
||||
allow_pickle = True
|
||||
|
||||
user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
|
||||
|
||||
state_dict, metadata = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
local_files_only=local_files_only,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
allow_pickle=allow_pickle,
|
||||
def __new__(cls, *args, **kwargs):
|
||||
deprecation_message = (
|
||||
"Importing `FluxLoraLoaderMixin` class like `from diffusers.loaders import FluxLoraLoaderMixin` is deprecated and will be removed in a future version. "
|
||||
"Please use `from diffusers.pipelines.flux.lora_utils import FluxLoraLoaderMixin` instead. "
|
||||
)
|
||||
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
|
||||
if is_dora_scale_present:
|
||||
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
|
||||
logger.warning(warn_msg)
|
||||
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
|
||||
deprecate("FluxLoraLoaderMixin", "1.0.0", deprecation_message, standard_warn=False)
|
||||
from ..pipelines.flux.lora_utils import FluxLoraLoaderMixin
|
||||
|
||||
# TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
|
||||
is_kohya = any(".lora_down.weight" in k for k in state_dict)
|
||||
if is_kohya:
|
||||
state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
|
||||
# Kohya already takes care of scaling the LoRA parameters with alpha.
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
is_xlabs = any("processor" in k for k in state_dict)
|
||||
if is_xlabs:
|
||||
state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
|
||||
# xlabs doesn't use `alpha`.
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
is_bfl_control = any("query_norm.scale" in k for k in state_dict)
|
||||
if is_bfl_control:
|
||||
state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
is_fal_kontext = any("base_model" in k for k in state_dict)
|
||||
if is_fal_kontext:
|
||||
state_dict = _convert_fal_kontext_lora_to_diffusers(state_dict)
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
# For state dicts like
|
||||
# https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
|
||||
keys = list(state_dict.keys())
|
||||
network_alphas = {}
|
||||
for k in keys:
|
||||
if "alpha" in k:
|
||||
alpha_value = state_dict.get(k)
|
||||
if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
|
||||
alpha_value, float
|
||||
):
|
||||
network_alphas[k] = state_dict.pop(k)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
|
||||
)
|
||||
|
||||
if return_alphas or return_lora_metadata:
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=network_alphas,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
else:
|
||||
return state_dict
|
||||
|
||||
def load_lora_weights(
|
||||
self,
|
||||
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
||||
adapter_name: Optional[str] = None,
|
||||
hotswap: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
|
||||
`self.text_encoder`.
|
||||
|
||||
All kwargs are forwarded to `self.lora_state_dict`.
|
||||
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
|
||||
loaded.
|
||||
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
|
||||
dict is loaded into `self.transformer`.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
`Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
hotswap (`bool`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
|
||||
kwargs (`dict`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
|
||||
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
|
||||
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
# if a dict is passed, copy it instead of modifying it inplace
|
||||
if isinstance(pretrained_model_name_or_path_or_dict, dict):
|
||||
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
|
||||
|
||||
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
|
||||
kwargs["return_lora_metadata"] = True
|
||||
state_dict, network_alphas, metadata = self.lora_state_dict(
|
||||
pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
|
||||
)
|
||||
|
||||
has_lora_keys = any("lora" in key for key in state_dict.keys())
|
||||
|
||||
# Flux Control LoRAs also have norm keys
|
||||
has_norm_keys = any(
|
||||
norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
|
||||
)
|
||||
|
||||
if not (has_lora_keys or has_norm_keys):
|
||||
raise ValueError("Invalid LoRA checkpoint.")
|
||||
|
||||
transformer_lora_state_dict = {
|
||||
k: state_dict.get(k)
|
||||
for k in list(state_dict.keys())
|
||||
if k.startswith(f"{self.transformer_name}.") and "lora" in k
|
||||
}
|
||||
transformer_norm_state_dict = {
|
||||
k: state_dict.pop(k)
|
||||
for k in list(state_dict.keys())
|
||||
if k.startswith(f"{self.transformer_name}.")
|
||||
and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
|
||||
}
|
||||
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
has_param_with_expanded_shape = False
|
||||
if len(transformer_lora_state_dict) > 0:
|
||||
has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
|
||||
transformer, transformer_lora_state_dict, transformer_norm_state_dict
|
||||
)
|
||||
|
||||
if has_param_with_expanded_shape:
|
||||
logger.info(
|
||||
"The LoRA weights contain parameters that have different shapes that expected by the transformer. "
|
||||
"As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
|
||||
"To get a comprehensive list of parameter names that were modified, enable debug logging."
|
||||
)
|
||||
if len(transformer_lora_state_dict) > 0:
|
||||
transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
|
||||
transformer=transformer, lora_state_dict=transformer_lora_state_dict
|
||||
)
|
||||
for k in transformer_lora_state_dict:
|
||||
state_dict.update({k: transformer_lora_state_dict[k]})
|
||||
|
||||
self.load_lora_into_transformer(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
transformer=transformer,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
if len(transformer_norm_state_dict) > 0:
|
||||
transformer._transformer_norm_layers = self._load_norm_into_transformer(
|
||||
transformer_norm_state_dict,
|
||||
transformer=transformer,
|
||||
discard_original_layers=False,
|
||||
)
|
||||
|
||||
self.load_lora_into_text_encoder(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
text_encoder=self.text_encoder,
|
||||
prefix=self.text_encoder_name,
|
||||
lora_scale=self.lora_scale,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def load_lora_into_transformer(
|
||||
cls,
|
||||
state_dict,
|
||||
network_alphas,
|
||||
transformer,
|
||||
adapter_name=None,
|
||||
metadata=None,
|
||||
_pipeline=None,
|
||||
low_cpu_mem_usage=False,
|
||||
hotswap: bool = False,
|
||||
):
|
||||
"""
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
|
||||
"""
|
||||
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
# Load the layers corresponding to transformer.
|
||||
logger.info(f"Loading {cls.transformer_name}.")
|
||||
transformer.load_lora_adapter(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _load_norm_into_transformer(
|
||||
cls,
|
||||
state_dict,
|
||||
transformer,
|
||||
prefix=None,
|
||||
discard_original_layers=False,
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
# Remove prefix if present
|
||||
prefix = prefix or cls.transformer_name
|
||||
for key in list(state_dict.keys()):
|
||||
if key.split(".")[0] == prefix:
|
||||
state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
|
||||
|
||||
# Find invalid keys
|
||||
transformer_state_dict = transformer.state_dict()
|
||||
transformer_keys = set(transformer_state_dict.keys())
|
||||
state_dict_keys = set(state_dict.keys())
|
||||
extra_keys = list(state_dict_keys - transformer_keys)
|
||||
|
||||
if extra_keys:
|
||||
logger.warning(
|
||||
f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
|
||||
)
|
||||
|
||||
for key in extra_keys:
|
||||
state_dict.pop(key)
|
||||
|
||||
# Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
|
||||
overwritten_layers_state_dict = {}
|
||||
if not discard_original_layers:
|
||||
for key in state_dict.keys():
|
||||
overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()
|
||||
|
||||
logger.info(
|
||||
"The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
|
||||
'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
|
||||
"fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
|
||||
"If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
|
||||
)
|
||||
|
||||
# We can't load with strict=True because the current state_dict does not contain all the transformer keys
|
||||
incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
|
||||
# We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
|
||||
if unexpected_keys:
|
||||
if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
|
||||
raise ValueError(
|
||||
f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
|
||||
)
|
||||
|
||||
return overwritten_layers_state_dict
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
|
||||
def load_lora_into_text_encoder(
|
||||
cls,
|
||||
state_dict,
|
||||
network_alphas,
|
||||
text_encoder,
|
||||
prefix=None,
|
||||
lora_scale=1.0,
|
||||
adapter_name=None,
|
||||
_pipeline=None,
|
||||
low_cpu_mem_usage=False,
|
||||
hotswap: bool = False,
|
||||
metadata=None,
|
||||
):
|
||||
"""
|
||||
This will load the LoRA layers specified in `state_dict` into `text_encoder`
|
||||
|
||||
Parameters:
|
||||
state_dict (`dict`):
|
||||
A standard state dict containing the lora layer parameters. The key should be prefixed with an
|
||||
additional `text_encoder` to distinguish between unet lora layers.
|
||||
network_alphas (`Dict[str, float]`):
|
||||
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
||||
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
||||
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
||||
text_encoder (`CLIPTextModel`):
|
||||
The text encoder model to load the LoRA layers into.
|
||||
prefix (`str`):
|
||||
Expected prefix of the `text_encoder` in the `state_dict`.
|
||||
lora_scale (`float`):
|
||||
How much to scale the output of the lora linear layer before it is added with the output of the regular
|
||||
lora layer.
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
hotswap (`bool`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
|
||||
metadata (`dict`):
|
||||
Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
|
||||
from the state dict.
|
||||
"""
|
||||
_load_lora_into_text_encoder(
|
||||
state_dict=state_dict,
|
||||
network_alphas=network_alphas,
|
||||
lora_scale=lora_scale,
|
||||
text_encoder=text_encoder,
|
||||
prefix=prefix,
|
||||
text_encoder_name=cls.text_encoder_name,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
|
||||
def save_lora_weights(
|
||||
cls,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
||||
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
|
||||
is_main_process: bool = True,
|
||||
weight_name: str = None,
|
||||
save_function: Callable = None,
|
||||
safe_serialization: bool = True,
|
||||
transformer_lora_adapter_metadata=None,
|
||||
text_encoder_lora_adapter_metadata=None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the UNet and text encoder.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
|
||||
encoder LoRA state dict because it comes from 🤗 Transformers.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
text_encoder_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
|
||||
if transformer_lora_layers:
|
||||
lora_layers[cls.transformer_name] = transformer_lora_layers
|
||||
lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
|
||||
|
||||
if text_encoder_lora_layers:
|
||||
lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
|
||||
lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
|
||||
|
||||
if not lora_layers:
|
||||
raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
|
||||
|
||||
cls._save_lora_weights(
|
||||
save_directory=save_directory,
|
||||
lora_layers=lora_layers,
|
||||
lora_metadata=lora_metadata,
|
||||
is_main_process=is_main_process,
|
||||
weight_name=weight_name,
|
||||
save_function=save_function,
|
||||
safe_serialization=safe_serialization,
|
||||
)
|
||||
|
||||
def fuse_lora(
|
||||
self,
|
||||
components: List[str] = ["transformer"],
|
||||
lora_scale: float = 1.0,
|
||||
safe_fusing: bool = False,
|
||||
adapter_names: Optional[List[str]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
|
||||
"""
|
||||
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
if (
|
||||
hasattr(transformer, "_transformer_norm_layers")
|
||||
and isinstance(transformer._transformer_norm_layers, dict)
|
||||
and len(transformer._transformer_norm_layers.keys()) > 0
|
||||
):
|
||||
logger.info(
|
||||
"The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
|
||||
"as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
|
||||
"fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
|
||||
)
|
||||
|
||||
super().fuse_lora(
|
||||
components=components,
|
||||
lora_scale=lora_scale,
|
||||
safe_fusing=safe_fusing,
|
||||
adapter_names=adapter_names,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
|
||||
r"""
|
||||
Reverses the effect of
|
||||
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
|
||||
|
||||
> [!WARNING] > This is an experimental API.
|
||||
|
||||
Args:
|
||||
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
|
||||
"""
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
|
||||
transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
|
||||
|
||||
super().unfuse_lora(components=components, **kwargs)
|
||||
|
||||
# We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
|
||||
def unload_lora_weights(self, reset_to_overwritten_params=False):
|
||||
"""
|
||||
Unloads the LoRA parameters.
|
||||
|
||||
Args:
|
||||
reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
|
||||
to their original params. Refer to the [Flux
|
||||
documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
|
||||
>>> pipeline.unload_lora_weights()
|
||||
>>> ...
|
||||
```
|
||||
"""
|
||||
super().unload_lora_weights()
|
||||
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
|
||||
transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
|
||||
transformer._transformer_norm_layers = None
|
||||
|
||||
if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
|
||||
overwritten_params = transformer._overwritten_params
|
||||
module_names = set()
|
||||
|
||||
for param_name in overwritten_params:
|
||||
if param_name.endswith(".weight"):
|
||||
module_names.add(param_name.replace(".weight", ""))
|
||||
|
||||
for name, module in transformer.named_modules():
|
||||
if isinstance(module, torch.nn.Linear) and name in module_names:
|
||||
module_weight = module.weight.data
|
||||
module_bias = module.bias.data if module.bias is not None else None
|
||||
bias = module_bias is not None
|
||||
|
||||
parent_module_name, _, current_module_name = name.rpartition(".")
|
||||
parent_module = transformer.get_submodule(parent_module_name)
|
||||
|
||||
current_param_weight = overwritten_params[f"{name}.weight"]
|
||||
in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
|
||||
with torch.device("meta"):
|
||||
original_module = torch.nn.Linear(
|
||||
in_features,
|
||||
out_features,
|
||||
bias=bias,
|
||||
dtype=module_weight.dtype,
|
||||
)
|
||||
|
||||
tmp_state_dict = {"weight": current_param_weight}
|
||||
if module_bias is not None:
|
||||
tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
|
||||
original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
|
||||
setattr(parent_module, current_module_name, original_module)
|
||||
|
||||
del tmp_state_dict
|
||||
|
||||
if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
|
||||
attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
|
||||
new_value = int(current_param_weight.shape[1])
|
||||
old_value = getattr(transformer.config, attribute_name)
|
||||
setattr(transformer.config, attribute_name, new_value)
|
||||
logger.info(
|
||||
f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _maybe_expand_transformer_param_shape_or_error_(
|
||||
cls,
|
||||
transformer: torch.nn.Module,
|
||||
lora_state_dict=None,
|
||||
norm_state_dict=None,
|
||||
prefix=None,
|
||||
) -> bool:
|
||||
"""
|
||||
Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
|
||||
generalizes things a bit so that any parameter that needs expansion receives appropriate treatment.
|
||||
"""
|
||||
state_dict = {}
|
||||
if lora_state_dict is not None:
|
||||
state_dict.update(lora_state_dict)
|
||||
if norm_state_dict is not None:
|
||||
state_dict.update(norm_state_dict)
|
||||
|
||||
# Remove prefix if present
|
||||
prefix = prefix or cls.transformer_name
|
||||
for key in list(state_dict.keys()):
|
||||
if key.split(".")[0] == prefix:
|
||||
state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
|
||||
|
||||
# Expand transformer parameter shapes if they don't match lora
|
||||
has_param_with_shape_update = False
|
||||
overwritten_params = {}
|
||||
|
||||
is_peft_loaded = getattr(transformer, "peft_config", None) is not None
|
||||
is_quantized = hasattr(transformer, "hf_quantizer")
|
||||
for name, module in transformer.named_modules():
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
module_weight = module.weight.data
|
||||
module_bias = module.bias.data if module.bias is not None else None
|
||||
bias = module_bias is not None
|
||||
|
||||
lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
|
||||
lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
|
||||
lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
|
||||
if lora_A_weight_name not in state_dict:
|
||||
continue
|
||||
|
||||
in_features = state_dict[lora_A_weight_name].shape[1]
|
||||
out_features = state_dict[lora_B_weight_name].shape[0]
|
||||
|
||||
# Model maybe loaded with different quantization schemes which may flatten the params.
|
||||
# `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
|
||||
# preserve weight shape.
|
||||
module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)
|
||||
|
||||
# This means there's no need for an expansion in the params, so we simply skip.
|
||||
if tuple(module_weight_shape) == (out_features, in_features):
|
||||
continue
|
||||
|
||||
module_out_features, module_in_features = module_weight_shape
|
||||
debug_message = ""
|
||||
if in_features > module_in_features:
|
||||
debug_message += (
|
||||
f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
|
||||
f"checkpoint contains higher number of features than expected. The number of input_features will be "
|
||||
f"expanded from {module_in_features} to {in_features}"
|
||||
)
|
||||
if out_features > module_out_features:
|
||||
debug_message += (
|
||||
", and the number of output features will be "
|
||||
f"expanded from {module_out_features} to {out_features}."
|
||||
)
|
||||
else:
|
||||
debug_message += "."
|
||||
if debug_message:
|
||||
logger.debug(debug_message)
|
||||
|
||||
if out_features > module_out_features or in_features > module_in_features:
|
||||
has_param_with_shape_update = True
|
||||
parent_module_name, _, current_module_name = name.rpartition(".")
|
||||
parent_module = transformer.get_submodule(parent_module_name)
|
||||
|
||||
if is_quantized:
|
||||
module_weight = _maybe_dequantize_weight_for_expanded_lora(transformer, module)
|
||||
|
||||
# TODO: consider if this layer needs to be a quantized layer as well if `is_quantized` is True.
|
||||
with torch.device("meta"):
|
||||
expanded_module = torch.nn.Linear(
|
||||
in_features, out_features, bias=bias, dtype=module_weight.dtype
|
||||
)
|
||||
# Only weights are expanded and biases are not. This is because only the input dimensions
|
||||
# are changed while the output dimensions remain the same. The shape of the weight tensor
|
||||
# is (out_features, in_features), while the shape of bias tensor is (out_features,), which
|
||||
# explains the reason why only weights are expanded.
|
||||
new_weight = torch.zeros_like(
|
||||
expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
|
||||
)
|
||||
slices = tuple(slice(0, dim) for dim in module_weight_shape)
|
||||
new_weight[slices] = module_weight
|
||||
tmp_state_dict = {"weight": new_weight}
|
||||
if module_bias is not None:
|
||||
tmp_state_dict["bias"] = module_bias
|
||||
expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)
|
||||
|
||||
setattr(parent_module, current_module_name, expanded_module)
|
||||
|
||||
del tmp_state_dict
|
||||
|
||||
if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
|
||||
attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
|
||||
new_value = int(expanded_module.weight.data.shape[1])
|
||||
old_value = getattr(transformer.config, attribute_name)
|
||||
setattr(transformer.config, attribute_name, new_value)
|
||||
logger.info(
|
||||
f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
|
||||
)
|
||||
|
||||
# For `unload_lora_weights()`.
|
||||
# TODO: this could lead to more memory overhead if the number of overwritten params
|
||||
# are large. Should be revisited later and tackled through a `discard_original_layers` arg.
|
||||
overwritten_params[f"{current_module_name}.weight"] = module_weight
|
||||
if module_bias is not None:
|
||||
overwritten_params[f"{current_module_name}.bias"] = module_bias
|
||||
|
||||
if len(overwritten_params) > 0:
|
||||
transformer._overwritten_params = overwritten_params
|
||||
|
||||
return has_param_with_shape_update
|
||||
|
||||
@classmethod
|
||||
def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
|
||||
expanded_module_names = set()
|
||||
transformer_state_dict = transformer.state_dict()
|
||||
prefix = f"{cls.transformer_name}."
|
||||
|
||||
lora_module_names = [
|
||||
key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
|
||||
]
|
||||
lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
|
||||
lora_module_names = sorted(set(lora_module_names))
|
||||
transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
|
||||
unexpected_modules = set(lora_module_names) - set(transformer_module_names)
|
||||
if unexpected_modules:
|
||||
logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")
|
||||
|
||||
for k in lora_module_names:
|
||||
if k in unexpected_modules:
|
||||
continue
|
||||
|
||||
base_param_name = (
|
||||
f"{k.replace(prefix, '')}.base_layer.weight"
|
||||
if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
|
||||
else f"{k.replace(prefix, '')}.weight"
|
||||
)
|
||||
base_weight_param = transformer_state_dict[base_param_name]
|
||||
lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]
|
||||
|
||||
# TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
|
||||
base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)
|
||||
|
||||
if base_module_shape[1] > lora_A_param.shape[1]:
|
||||
shape = (lora_A_param.shape[0], base_weight_param.shape[1])
|
||||
expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
|
||||
expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
|
||||
lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
|
||||
expanded_module_names.add(k)
|
||||
elif base_module_shape[1] < lora_A_param.shape[1]:
|
||||
raise NotImplementedError(
|
||||
f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
|
||||
)
|
||||
|
||||
if expanded_module_names:
|
||||
logger.info(
|
||||
f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
|
||||
)
|
||||
|
||||
return lora_state_dict
|
||||
|
||||
@staticmethod
|
||||
def _calculate_module_shape(
|
||||
model: "torch.nn.Module",
|
||||
base_module: "torch.nn.Linear" = None,
|
||||
base_weight_param_name: str = None,
|
||||
) -> "torch.Size":
|
||||
def _get_weight_shape(weight: torch.Tensor):
|
||||
if weight.__class__.__name__ == "Params4bit":
|
||||
return weight.quant_state.shape
|
||||
elif weight.__class__.__name__ == "GGUFParameter":
|
||||
return weight.quant_shape
|
||||
else:
|
||||
return weight.shape
|
||||
|
||||
if base_module is not None:
|
||||
return _get_weight_shape(base_module.weight)
|
||||
elif base_weight_param_name is not None:
|
||||
if not base_weight_param_name.endswith(".weight"):
|
||||
raise ValueError(
|
||||
f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
|
||||
)
|
||||
module_path = base_weight_param_name.rsplit(".weight", 1)[0]
|
||||
submodule = get_submodule_by_name(model, module_path)
|
||||
return _get_weight_shape(submodule.weight)
|
||||
|
||||
raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")
|
||||
|
||||
@staticmethod
|
||||
def _prepare_outputs(state_dict, metadata, alphas=None, return_alphas=False, return_metadata=False):
|
||||
outputs = [state_dict]
|
||||
if return_alphas:
|
||||
outputs.append(alphas)
|
||||
if return_metadata:
|
||||
outputs.append(metadata)
|
||||
return tuple(outputs) if (return_alphas or return_metadata) else state_dict
|
||||
return FluxLoraLoaderMixin(*args, **kwargs)
|
||||
|
||||
|
||||
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
|
||||
|
||||
839
src/diffusers/pipelines/flux/lora_utils.py
Normal file
839
src/diffusers/pipelines/flux/lora_utils.py
Normal file
@@ -0,0 +1,839 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from typing import Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
from ...loaders.lora_base import (
|
||||
_LOW_CPU_MEM_USAGE_DEFAULT_LORA,
|
||||
TEXT_ENCODER_NAME,
|
||||
TRANSFORMER_NAME,
|
||||
LoraBaseMixin,
|
||||
_fetch_state_dict,
|
||||
_load_lora_into_text_encoder,
|
||||
_maybe_dequantize_weight_for_expanded_lora,
|
||||
)
|
||||
from ...loaders.lora_conversion_utils import (
|
||||
_convert_bfl_flux_control_lora_to_diffusers,
|
||||
_convert_fal_kontext_lora_to_diffusers,
|
||||
_convert_kohya_flux_lora_to_diffusers,
|
||||
_convert_xlabs_flux_lora_to_diffusers,
|
||||
)
|
||||
from ...utils import USE_PEFT_BACKEND, get_submodule_by_name, is_peft_version, logging
|
||||
from ...utils.hub_utils import validate_hf_hub_args
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}
|
||||
|
||||
|
||||
class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
r"""
|
||||
Load LoRA layers into [`FluxTransformer2DModel`],
|
||||
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
|
||||
|
||||
Specific to [`StableDiffusion3Pipeline`].
|
||||
"""
|
||||
|
||||
_lora_loadable_modules = ["transformer", "text_encoder"]
|
||||
transformer_name = TRANSFORMER_NAME
|
||||
text_encoder_name = TEXT_ENCODER_NAME
|
||||
_control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def lora_state_dict(
|
||||
cls,
|
||||
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
||||
return_alphas: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
|
||||
"""
|
||||
# Load the main state dict first which has the LoRA layers for either of
|
||||
# transformer and text encoder or both.
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
weight_name = kwargs.pop("weight_name", None)
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
return_lora_metadata = kwargs.pop("return_lora_metadata", False)
|
||||
|
||||
allow_pickle = False
|
||||
if use_safetensors is None:
|
||||
use_safetensors = True
|
||||
allow_pickle = True
|
||||
|
||||
user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
|
||||
|
||||
state_dict, metadata = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
local_files_only=local_files_only,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
allow_pickle=allow_pickle,
|
||||
)
|
||||
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
|
||||
if is_dora_scale_present:
|
||||
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
|
||||
logger.warning(warn_msg)
|
||||
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
|
||||
|
||||
# TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
|
||||
is_kohya = any(".lora_down.weight" in k for k in state_dict)
|
||||
if is_kohya:
|
||||
state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
|
||||
# Kohya already takes care of scaling the LoRA parameters with alpha.
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
is_xlabs = any("processor" in k for k in state_dict)
|
||||
if is_xlabs:
|
||||
state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
|
||||
# xlabs doesn't use `alpha`.
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
is_bfl_control = any("query_norm.scale" in k for k in state_dict)
|
||||
if is_bfl_control:
|
||||
state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
is_fal_kontext = any("base_model" in k for k in state_dict)
|
||||
if is_fal_kontext:
|
||||
state_dict = _convert_fal_kontext_lora_to_diffusers(state_dict)
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=None,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
|
||||
# For state dicts like
|
||||
# https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
|
||||
keys = list(state_dict.keys())
|
||||
network_alphas = {}
|
||||
for k in keys:
|
||||
if "alpha" in k:
|
||||
alpha_value = state_dict.get(k)
|
||||
if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
|
||||
alpha_value, float
|
||||
):
|
||||
network_alphas[k] = state_dict.pop(k)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
|
||||
)
|
||||
|
||||
if return_alphas or return_lora_metadata:
|
||||
return cls._prepare_outputs(
|
||||
state_dict,
|
||||
metadata=metadata,
|
||||
alphas=network_alphas,
|
||||
return_alphas=return_alphas,
|
||||
return_metadata=return_lora_metadata,
|
||||
)
|
||||
else:
|
||||
return state_dict
|
||||
|
||||
def load_lora_weights(
|
||||
self,
|
||||
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
||||
adapter_name: Optional[str] = None,
|
||||
hotswap: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
|
||||
`self.text_encoder`.
|
||||
|
||||
All kwargs are forwarded to `self.lora_state_dict`.
|
||||
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
|
||||
loaded.
|
||||
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
|
||||
dict is loaded into `self.transformer`.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
`Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
hotswap (`bool`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
|
||||
kwargs (`dict`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
|
||||
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
|
||||
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
# if a dict is passed, copy it instead of modifying it inplace
|
||||
if isinstance(pretrained_model_name_or_path_or_dict, dict):
|
||||
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
|
||||
|
||||
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
|
||||
kwargs["return_lora_metadata"] = True
|
||||
state_dict, network_alphas, metadata = self.lora_state_dict(
|
||||
pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
|
||||
)
|
||||
|
||||
has_lora_keys = any("lora" in key for key in state_dict.keys())
|
||||
|
||||
# Flux Control LoRAs also have norm keys
|
||||
has_norm_keys = any(
|
||||
norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
|
||||
)
|
||||
|
||||
if not (has_lora_keys or has_norm_keys):
|
||||
raise ValueError("Invalid LoRA checkpoint.")
|
||||
|
||||
transformer_lora_state_dict = {
|
||||
k: state_dict.get(k)
|
||||
for k in list(state_dict.keys())
|
||||
if k.startswith(f"{self.transformer_name}.") and "lora" in k
|
||||
}
|
||||
transformer_norm_state_dict = {
|
||||
k: state_dict.pop(k)
|
||||
for k in list(state_dict.keys())
|
||||
if k.startswith(f"{self.transformer_name}.")
|
||||
and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
|
||||
}
|
||||
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
has_param_with_expanded_shape = False
|
||||
if len(transformer_lora_state_dict) > 0:
|
||||
has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
|
||||
transformer, transformer_lora_state_dict, transformer_norm_state_dict
|
||||
)
|
||||
|
||||
if has_param_with_expanded_shape:
|
||||
logger.info(
|
||||
"The LoRA weights contain parameters that have different shapes that expected by the transformer. "
|
||||
"As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
|
||||
"To get a comprehensive list of parameter names that were modified, enable debug logging."
|
||||
)
|
||||
if len(transformer_lora_state_dict) > 0:
|
||||
transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
|
||||
transformer=transformer, lora_state_dict=transformer_lora_state_dict
|
||||
)
|
||||
for k in transformer_lora_state_dict:
|
||||
state_dict.update({k: transformer_lora_state_dict[k]})
|
||||
|
||||
self.load_lora_into_transformer(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
transformer=transformer,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
if len(transformer_norm_state_dict) > 0:
|
||||
transformer._transformer_norm_layers = self._load_norm_into_transformer(
|
||||
transformer_norm_state_dict,
|
||||
transformer=transformer,
|
||||
discard_original_layers=False,
|
||||
)
|
||||
|
||||
self.load_lora_into_text_encoder(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
text_encoder=self.text_encoder,
|
||||
prefix=self.text_encoder_name,
|
||||
lora_scale=self.lora_scale,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def load_lora_into_transformer(
|
||||
cls,
|
||||
state_dict,
|
||||
network_alphas,
|
||||
transformer,
|
||||
adapter_name=None,
|
||||
metadata=None,
|
||||
_pipeline=None,
|
||||
low_cpu_mem_usage=False,
|
||||
hotswap: bool = False,
|
||||
):
|
||||
"""
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
|
||||
"""
|
||||
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
# Load the layers corresponding to transformer.
|
||||
logger.info(f"Loading {cls.transformer_name}.")
|
||||
transformer.load_lora_adapter(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _load_norm_into_transformer(
|
||||
cls,
|
||||
state_dict,
|
||||
transformer,
|
||||
prefix=None,
|
||||
discard_original_layers=False,
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
# Remove prefix if present
|
||||
prefix = prefix or cls.transformer_name
|
||||
for key in list(state_dict.keys()):
|
||||
if key.split(".")[0] == prefix:
|
||||
state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
|
||||
|
||||
# Find invalid keys
|
||||
transformer_state_dict = transformer.state_dict()
|
||||
transformer_keys = set(transformer_state_dict.keys())
|
||||
state_dict_keys = set(state_dict.keys())
|
||||
extra_keys = list(state_dict_keys - transformer_keys)
|
||||
|
||||
if extra_keys:
|
||||
logger.warning(
|
||||
f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
|
||||
)
|
||||
|
||||
for key in extra_keys:
|
||||
state_dict.pop(key)
|
||||
|
||||
# Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
|
||||
overwritten_layers_state_dict = {}
|
||||
if not discard_original_layers:
|
||||
for key in state_dict.keys():
|
||||
overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()
|
||||
|
||||
logger.info(
|
||||
"The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
|
||||
'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
|
||||
"fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
|
||||
"If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
|
||||
)
|
||||
|
||||
# We can't load with strict=True because the current state_dict does not contain all the transformer keys
|
||||
incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
|
||||
# We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
|
||||
if unexpected_keys:
|
||||
if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
|
||||
raise ValueError(
|
||||
f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
|
||||
)
|
||||
|
||||
return overwritten_layers_state_dict
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
|
||||
def load_lora_into_text_encoder(
|
||||
cls,
|
||||
state_dict,
|
||||
network_alphas,
|
||||
text_encoder,
|
||||
prefix=None,
|
||||
lora_scale=1.0,
|
||||
adapter_name=None,
|
||||
_pipeline=None,
|
||||
low_cpu_mem_usage=False,
|
||||
hotswap: bool = False,
|
||||
metadata=None,
|
||||
):
|
||||
"""
|
||||
This will load the LoRA layers specified in `state_dict` into `text_encoder`
|
||||
|
||||
Parameters:
|
||||
state_dict (`dict`):
|
||||
A standard state dict containing the lora layer parameters. The key should be prefixed with an
|
||||
additional `text_encoder` to distinguish between unet lora layers.
|
||||
network_alphas (`Dict[str, float]`):
|
||||
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
||||
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
||||
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
||||
text_encoder (`CLIPTextModel`):
|
||||
The text encoder model to load the LoRA layers into.
|
||||
prefix (`str`):
|
||||
Expected prefix of the `text_encoder` in the `state_dict`.
|
||||
lora_scale (`float`):
|
||||
How much to scale the output of the lora linear layer before it is added with the output of the regular
|
||||
lora layer.
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
hotswap (`bool`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
|
||||
metadata (`dict`):
|
||||
Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
|
||||
from the state dict.
|
||||
"""
|
||||
_load_lora_into_text_encoder(
|
||||
state_dict=state_dict,
|
||||
network_alphas=network_alphas,
|
||||
lora_scale=lora_scale,
|
||||
text_encoder=text_encoder,
|
||||
prefix=prefix,
|
||||
text_encoder_name=cls.text_encoder_name,
|
||||
adapter_name=adapter_name,
|
||||
metadata=metadata,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
hotswap=hotswap,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
|
||||
def save_lora_weights(
|
||||
cls,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
||||
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
|
||||
is_main_process: bool = True,
|
||||
weight_name: str = None,
|
||||
save_function: Callable = None,
|
||||
safe_serialization: bool = True,
|
||||
transformer_lora_adapter_metadata=None,
|
||||
text_encoder_lora_adapter_metadata=None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the UNet and text encoder.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
|
||||
encoder LoRA state dict because it comes from 🤗 Transformers.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
text_encoder_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
|
||||
if transformer_lora_layers:
|
||||
lora_layers[cls.transformer_name] = transformer_lora_layers
|
||||
lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
|
||||
|
||||
if text_encoder_lora_layers:
|
||||
lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
|
||||
lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
|
||||
|
||||
if not lora_layers:
|
||||
raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
|
||||
|
||||
cls._save_lora_weights(
|
||||
save_directory=save_directory,
|
||||
lora_layers=lora_layers,
|
||||
lora_metadata=lora_metadata,
|
||||
is_main_process=is_main_process,
|
||||
weight_name=weight_name,
|
||||
save_function=save_function,
|
||||
safe_serialization=safe_serialization,
|
||||
)
|
||||
|
||||
def fuse_lora(
|
||||
self,
|
||||
components: List[str] = ["transformer"],
|
||||
lora_scale: float = 1.0,
|
||||
safe_fusing: bool = False,
|
||||
adapter_names: Optional[List[str]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
|
||||
"""
|
||||
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
if (
|
||||
hasattr(transformer, "_transformer_norm_layers")
|
||||
and isinstance(transformer._transformer_norm_layers, dict)
|
||||
and len(transformer._transformer_norm_layers.keys()) > 0
|
||||
):
|
||||
logger.info(
|
||||
"The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
|
||||
"as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
|
||||
"fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
|
||||
)
|
||||
|
||||
super().fuse_lora(
|
||||
components=components,
|
||||
lora_scale=lora_scale,
|
||||
safe_fusing=safe_fusing,
|
||||
adapter_names=adapter_names,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
|
||||
r"""
|
||||
Reverses the effect of
|
||||
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
|
||||
|
||||
> [!WARNING] > This is an experimental API.
|
||||
|
||||
Args:
|
||||
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
|
||||
"""
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
|
||||
transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
|
||||
|
||||
super().unfuse_lora(components=components, **kwargs)
|
||||
|
||||
# We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
|
||||
def unload_lora_weights(self, reset_to_overwritten_params=False):
|
||||
"""
|
||||
Unloads the LoRA parameters.
|
||||
|
||||
Args:
|
||||
reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
|
||||
to their original params. Refer to the [Flux
|
||||
documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
|
||||
>>> pipeline.unload_lora_weights()
|
||||
>>> ...
|
||||
```
|
||||
"""
|
||||
super().unload_lora_weights()
|
||||
|
||||
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
|
||||
if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
|
||||
transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
|
||||
transformer._transformer_norm_layers = None
|
||||
|
||||
if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
|
||||
overwritten_params = transformer._overwritten_params
|
||||
module_names = set()
|
||||
|
||||
for param_name in overwritten_params:
|
||||
if param_name.endswith(".weight"):
|
||||
module_names.add(param_name.replace(".weight", ""))
|
||||
|
||||
for name, module in transformer.named_modules():
|
||||
if isinstance(module, torch.nn.Linear) and name in module_names:
|
||||
module_weight = module.weight.data
|
||||
module_bias = module.bias.data if module.bias is not None else None
|
||||
bias = module_bias is not None
|
||||
|
||||
parent_module_name, _, current_module_name = name.rpartition(".")
|
||||
parent_module = transformer.get_submodule(parent_module_name)
|
||||
|
||||
current_param_weight = overwritten_params[f"{name}.weight"]
|
||||
in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
|
||||
with torch.device("meta"):
|
||||
original_module = torch.nn.Linear(
|
||||
in_features,
|
||||
out_features,
|
||||
bias=bias,
|
||||
dtype=module_weight.dtype,
|
||||
)
|
||||
|
||||
tmp_state_dict = {"weight": current_param_weight}
|
||||
if module_bias is not None:
|
||||
tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
|
||||
original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
|
||||
setattr(parent_module, current_module_name, original_module)
|
||||
|
||||
del tmp_state_dict
|
||||
|
||||
if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
|
||||
attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
|
||||
new_value = int(current_param_weight.shape[1])
|
||||
old_value = getattr(transformer.config, attribute_name)
|
||||
setattr(transformer.config, attribute_name, new_value)
|
||||
logger.info(
|
||||
f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _maybe_expand_transformer_param_shape_or_error_(
|
||||
cls,
|
||||
transformer: torch.nn.Module,
|
||||
lora_state_dict=None,
|
||||
norm_state_dict=None,
|
||||
prefix=None,
|
||||
) -> bool:
|
||||
"""
|
||||
Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
|
||||
generalizes things a bit so that any parameter that needs expansion receives appropriate treatment.
|
||||
"""
|
||||
state_dict = {}
|
||||
if lora_state_dict is not None:
|
||||
state_dict.update(lora_state_dict)
|
||||
if norm_state_dict is not None:
|
||||
state_dict.update(norm_state_dict)
|
||||
|
||||
# Remove prefix if present
|
||||
prefix = prefix or cls.transformer_name
|
||||
for key in list(state_dict.keys()):
|
||||
if key.split(".")[0] == prefix:
|
||||
state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
|
||||
|
||||
# Expand transformer parameter shapes if they don't match lora
|
||||
has_param_with_shape_update = False
|
||||
overwritten_params = {}
|
||||
|
||||
is_peft_loaded = getattr(transformer, "peft_config", None) is not None
|
||||
is_quantized = hasattr(transformer, "hf_quantizer")
|
||||
for name, module in transformer.named_modules():
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
module_weight = module.weight.data
|
||||
module_bias = module.bias.data if module.bias is not None else None
|
||||
bias = module_bias is not None
|
||||
|
||||
lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
|
||||
lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
|
||||
lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
|
||||
if lora_A_weight_name not in state_dict:
|
||||
continue
|
||||
|
||||
in_features = state_dict[lora_A_weight_name].shape[1]
|
||||
out_features = state_dict[lora_B_weight_name].shape[0]
|
||||
|
||||
# Model maybe loaded with different quantization schemes which may flatten the params.
|
||||
# `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
|
||||
# preserve weight shape.
|
||||
module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)
|
||||
|
||||
# This means there's no need for an expansion in the params, so we simply skip.
|
||||
if tuple(module_weight_shape) == (out_features, in_features):
|
||||
continue
|
||||
|
||||
module_out_features, module_in_features = module_weight_shape
|
||||
debug_message = ""
|
||||
if in_features > module_in_features:
|
||||
debug_message += (
|
||||
f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
|
||||
f"checkpoint contains higher number of features than expected. The number of input_features will be "
|
||||
f"expanded from {module_in_features} to {in_features}"
|
||||
)
|
||||
if out_features > module_out_features:
|
||||
debug_message += (
|
||||
", and the number of output features will be "
|
||||
f"expanded from {module_out_features} to {out_features}."
|
||||
)
|
||||
else:
|
||||
debug_message += "."
|
||||
if debug_message:
|
||||
logger.debug(debug_message)
|
||||
|
||||
if out_features > module_out_features or in_features > module_in_features:
|
||||
has_param_with_shape_update = True
|
||||
parent_module_name, _, current_module_name = name.rpartition(".")
|
||||
parent_module = transformer.get_submodule(parent_module_name)
|
||||
|
||||
if is_quantized:
|
||||
module_weight = _maybe_dequantize_weight_for_expanded_lora(transformer, module)
|
||||
|
||||
# TODO: consider if this layer needs to be a quantized layer as well if `is_quantized` is True.
|
||||
with torch.device("meta"):
|
||||
expanded_module = torch.nn.Linear(
|
||||
in_features, out_features, bias=bias, dtype=module_weight.dtype
|
||||
)
|
||||
# Only weights are expanded and biases are not. This is because only the input dimensions
|
||||
# are changed while the output dimensions remain the same. The shape of the weight tensor
|
||||
# is (out_features, in_features), while the shape of bias tensor is (out_features,), which
|
||||
# explains the reason why only weights are expanded.
|
||||
new_weight = torch.zeros_like(
|
||||
expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
|
||||
)
|
||||
slices = tuple(slice(0, dim) for dim in module_weight_shape)
|
||||
new_weight[slices] = module_weight
|
||||
tmp_state_dict = {"weight": new_weight}
|
||||
if module_bias is not None:
|
||||
tmp_state_dict["bias"] = module_bias
|
||||
expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)
|
||||
|
||||
setattr(parent_module, current_module_name, expanded_module)
|
||||
|
||||
del tmp_state_dict
|
||||
|
||||
if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
|
||||
attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
|
||||
new_value = int(expanded_module.weight.data.shape[1])
|
||||
old_value = getattr(transformer.config, attribute_name)
|
||||
setattr(transformer.config, attribute_name, new_value)
|
||||
logger.info(
|
||||
f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
|
||||
)
|
||||
|
||||
# For `unload_lora_weights()`.
|
||||
# TODO: this could lead to more memory overhead if the number of overwritten params
|
||||
# are large. Should be revisited later and tackled through a `discard_original_layers` arg.
|
||||
overwritten_params[f"{current_module_name}.weight"] = module_weight
|
||||
if module_bias is not None:
|
||||
overwritten_params[f"{current_module_name}.bias"] = module_bias
|
||||
|
||||
if len(overwritten_params) > 0:
|
||||
transformer._overwritten_params = overwritten_params
|
||||
|
||||
return has_param_with_shape_update
|
||||
|
||||
@classmethod
|
||||
def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
|
||||
expanded_module_names = set()
|
||||
transformer_state_dict = transformer.state_dict()
|
||||
prefix = f"{cls.transformer_name}."
|
||||
|
||||
lora_module_names = [
|
||||
key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
|
||||
]
|
||||
lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
|
||||
lora_module_names = sorted(set(lora_module_names))
|
||||
transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
|
||||
unexpected_modules = set(lora_module_names) - set(transformer_module_names)
|
||||
if unexpected_modules:
|
||||
logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")
|
||||
|
||||
for k in lora_module_names:
|
||||
if k in unexpected_modules:
|
||||
continue
|
||||
|
||||
base_param_name = (
|
||||
f"{k.replace(prefix, '')}.base_layer.weight"
|
||||
if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
|
||||
else f"{k.replace(prefix, '')}.weight"
|
||||
)
|
||||
base_weight_param = transformer_state_dict[base_param_name]
|
||||
lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]
|
||||
|
||||
# TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
|
||||
base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)
|
||||
|
||||
if base_module_shape[1] > lora_A_param.shape[1]:
|
||||
shape = (lora_A_param.shape[0], base_weight_param.shape[1])
|
||||
expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
|
||||
expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
|
||||
lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
|
||||
expanded_module_names.add(k)
|
||||
elif base_module_shape[1] < lora_A_param.shape[1]:
|
||||
raise NotImplementedError(
|
||||
f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
|
||||
)
|
||||
|
||||
if expanded_module_names:
|
||||
logger.info(
|
||||
f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
|
||||
)
|
||||
|
||||
return lora_state_dict
|
||||
|
||||
@staticmethod
|
||||
def _calculate_module_shape(
|
||||
model: "torch.nn.Module",
|
||||
base_module: "torch.nn.Linear" = None,
|
||||
base_weight_param_name: str = None,
|
||||
) -> "torch.Size":
|
||||
def _get_weight_shape(weight: torch.Tensor):
|
||||
if weight.__class__.__name__ == "Params4bit":
|
||||
return weight.quant_state.shape
|
||||
elif weight.__class__.__name__ == "GGUFParameter":
|
||||
return weight.quant_shape
|
||||
else:
|
||||
return weight.shape
|
||||
|
||||
if base_module is not None:
|
||||
return _get_weight_shape(base_module.weight)
|
||||
elif base_weight_param_name is not None:
|
||||
if not base_weight_param_name.endswith(".weight"):
|
||||
raise ValueError(
|
||||
f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
|
||||
)
|
||||
module_path = base_weight_param_name.rsplit(".weight", 1)[0]
|
||||
submodule = get_submodule_by_name(model, module_path)
|
||||
return _get_weight_shape(submodule.weight)
|
||||
|
||||
raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")
|
||||
|
||||
@staticmethod
|
||||
def _prepare_outputs(state_dict, metadata, alphas=None, return_alphas=False, return_metadata=False):
|
||||
outputs = [state_dict]
|
||||
if return_alphas:
|
||||
outputs.append(alphas)
|
||||
if return_metadata:
|
||||
outputs.append(metadata)
|
||||
return tuple(outputs) if (return_alphas or return_metadata) else state_dict
|
||||
@@ -26,16 +26,13 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...loaders import FluxIPAdapterMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...models import AutoencoderKL, FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import (
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -19,17 +19,14 @@ import torch
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...loaders import FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import (
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -19,13 +19,14 @@ import torch
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
||||
from ...loaders import FromSingleFileMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -24,17 +24,14 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import (
|
||||
FluxLoraLoaderMixin,
|
||||
FromSingleFileMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
)
|
||||
from ...loaders import FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -26,7 +26,7 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin
|
||||
from ...loaders import FluxIPAdapterMixin, FromSingleFileMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
@@ -34,6 +34,7 @@ from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
||||
from ...loaders import FromSingleFileMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
@@ -18,6 +18,7 @@ from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
||||
from ...loaders import FromSingleFileMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
@@ -19,6 +19,7 @@ from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -19,13 +19,14 @@ import torch
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...loaders import FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -26,13 +26,14 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin
|
||||
from ...loaders import FluxIPAdapterMixin, FromSingleFileMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -27,7 +27,7 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin
|
||||
from ...loaders import FluxIPAdapterMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
@@ -38,6 +38,7 @@ from ...utils import (
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -26,12 +26,13 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...loaders import FluxIPAdapterMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...models import AutoencoderKL, FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
@@ -16,12 +16,13 @@ from transformers import (
|
||||
)
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...loaders import FluxIPAdapterMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...models import AutoencoderKL, FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .lora_utils import FluxLoraLoaderMixin
|
||||
from .pipeline_flux_utils import FluxMixin, calculate_shift, retrieve_latents, retrieve_timesteps
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
Reference in New Issue
Block a user