mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
committed by
GitHub
parent
9288fb1df8
commit
3dcc5e9a5a
@@ -1,4 +1,4 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
@@ -10,19 +10,89 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Models
|
||||
# Logging
|
||||
|
||||
Diffusers contains pretrained models for popular algorithms and modules for creating the next set of diffusion models.
|
||||
The primary function of these models is to denoise an input sample, by modeling the distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
|
||||
The models are built on the base class ['ModelMixin'] that is a `torch.nn.module` with basic functionality for saving and loading models both locally and from the HuggingFace hub.
|
||||
🧨 Diffusers has a centralized logging system, so that you can setup the verbosity of the library easily.
|
||||
|
||||
## API
|
||||
Currently the default verbosity of the library is `WARNING`.
|
||||
|
||||
Models should provide the `def forward` function and initialization of the model.
|
||||
All saving, loading, and utilities should be in the base ['ModelMixin'] class.
|
||||
To change the level of verbosity, just use one of the direct setters. For instance, here is how to change the verbosity
|
||||
to the INFO level.
|
||||
|
||||
## Examples
|
||||
```python
|
||||
import diffusers
|
||||
|
||||
- The ['UNetModel'] was proposed in [TODO](https://arxiv.org/) and has been used in paper1, paper2, paper3.
|
||||
- Extensions of the ['UNetModel'] include the ['UNetGlideModel'] that uses attention and timestep embeddings for the [GLIDE](https://arxiv.org/abs/2112.10741) paper, the ['UNetGradTTS'] model from this [paper](https://arxiv.org/abs/2105.06337) for text-to-speech, ['UNetLDMModel'] for latent-diffusion models in this [paper](https://arxiv.org/abs/2112.10752), and the ['TemporalUNet'] used for time-series prediciton in this reinforcement learning [paper](https://arxiv.org/abs/2205.09991).
|
||||
- TODO: mention VAE / SDE score estimation
|
||||
diffusers.logging.set_verbosity_info()
|
||||
```
|
||||
|
||||
You can also use the environment variable `DIFFUSERS_VERBOSITY` to override the default verbosity. You can set it
|
||||
to one of the following: `debug`, `info`, `warning`, `error`, `critical`. For example:
|
||||
|
||||
```bash
|
||||
DIFFUSERS_VERBOSITY=error ./myprogram.py
|
||||
```
|
||||
|
||||
Additionally, some `warnings` can be disabled by setting the environment variable
|
||||
`DIFFUSERS_NO_ADVISORY_WARNINGS` to a true value, like *1*. This will disable any warning that is logged using
|
||||
[`logger.warning_advice`]. For example:
|
||||
|
||||
```bash
|
||||
DIFFUSERS_NO_ADVISORY_WARNINGS=1 ./myprogram.py
|
||||
```
|
||||
|
||||
Here is an example of how to use the same logger as the library in your own module or script:
|
||||
|
||||
```python
|
||||
from diffusers.utils import logging
|
||||
|
||||
logging.set_verbosity_info()
|
||||
logger = logging.get_logger("diffusers")
|
||||
logger.info("INFO")
|
||||
logger.warning("WARN")
|
||||
```
|
||||
|
||||
|
||||
All the methods of this logging module are documented below, the main ones are
|
||||
[`logging.get_verbosity`] to get the current level of verbosity in the logger and
|
||||
[`logging.set_verbosity`] to set the verbosity to the level of your choice. In order (from the least
|
||||
verbose to the most verbose), those levels (with their corresponding int values in parenthesis) are:
|
||||
|
||||
- `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` (int value, 50): only report the most
|
||||
critical errors.
|
||||
- `diffusers.logging.ERROR` (int value, 40): only report errors.
|
||||
- `diffusers.logging.WARNING` or `diffusers.logging.WARN` (int value, 30): only reports error and
|
||||
warnings. This the default level used by the library.
|
||||
- `diffusers.logging.INFO` (int value, 20): reports error, warnings and basic information.
|
||||
- `diffusers.logging.DEBUG` (int value, 10): report all information.
|
||||
|
||||
By default, `tqdm` progress bars will be displayed during model download. [`logging.disable_progress_bar`] and [`logging.enable_progress_bar`] can be used to suppress or unsuppress this behavior.
|
||||
|
||||
## Base setters
|
||||
|
||||
[[autodoc]] logging.set_verbosity_error
|
||||
|
||||
[[autodoc]] logging.set_verbosity_warning
|
||||
|
||||
[[autodoc]] logging.set_verbosity_info
|
||||
|
||||
[[autodoc]] logging.set_verbosity_debug
|
||||
|
||||
## Other functions
|
||||
|
||||
[[autodoc]] logging.get_verbosity
|
||||
|
||||
[[autodoc]] logging.set_verbosity
|
||||
|
||||
[[autodoc]] logging.get_logger
|
||||
|
||||
[[autodoc]] logging.enable_default_handler
|
||||
|
||||
[[autodoc]] logging.disable_default_handler
|
||||
|
||||
[[autodoc]] logging.enable_explicit_format
|
||||
|
||||
[[autodoc]] logging.reset_format
|
||||
|
||||
[[autodoc]] logging.enable_progress_bar
|
||||
|
||||
[[autodoc]] logging.disable_progress_bar
|
||||
|
||||
@@ -24,6 +24,7 @@ from .schedulers import (
|
||||
SchedulerMixin,
|
||||
ScoreSdeVeScheduler,
|
||||
)
|
||||
from .utils import logging
|
||||
|
||||
|
||||
if is_scipy_available():
|
||||
|
||||
Reference in New Issue
Block a user