1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[Docs] Logging (#394)

up
This commit is contained in:
Patrick von Platen
2022-09-07 14:58:21 +02:00
committed by GitHub
parent 9288fb1df8
commit 3dcc5e9a5a
2 changed files with 83 additions and 12 deletions

View File

@@ -1,4 +1,4 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -10,19 +10,89 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Models
# Logging
Diffusers contains pretrained models for popular algorithms and modules for creating the next set of diffusion models.
The primary function of these models is to denoise an input sample, by modeling the distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
The models are built on the base class ['ModelMixin'] that is a `torch.nn.module` with basic functionality for saving and loading models both locally and from the HuggingFace hub.
🧨 Diffusers has a centralized logging system, so that you can setup the verbosity of the library easily.
## API
Currently the default verbosity of the library is `WARNING`.
Models should provide the `def forward` function and initialization of the model.
All saving, loading, and utilities should be in the base ['ModelMixin'] class.
To change the level of verbosity, just use one of the direct setters. For instance, here is how to change the verbosity
to the INFO level.
## Examples
```python
import diffusers
- The ['UNetModel'] was proposed in [TODO](https://arxiv.org/) and has been used in paper1, paper2, paper3.
- Extensions of the ['UNetModel'] include the ['UNetGlideModel'] that uses attention and timestep embeddings for the [GLIDE](https://arxiv.org/abs/2112.10741) paper, the ['UNetGradTTS'] model from this [paper](https://arxiv.org/abs/2105.06337) for text-to-speech, ['UNetLDMModel'] for latent-diffusion models in this [paper](https://arxiv.org/abs/2112.10752), and the ['TemporalUNet'] used for time-series prediciton in this reinforcement learning [paper](https://arxiv.org/abs/2205.09991).
- TODO: mention VAE / SDE score estimation
diffusers.logging.set_verbosity_info()
```
You can also use the environment variable `DIFFUSERS_VERBOSITY` to override the default verbosity. You can set it
to one of the following: `debug`, `info`, `warning`, `error`, `critical`. For example:
```bash
DIFFUSERS_VERBOSITY=error ./myprogram.py
```
Additionally, some `warnings` can be disabled by setting the environment variable
`DIFFUSERS_NO_ADVISORY_WARNINGS` to a true value, like *1*. This will disable any warning that is logged using
[`logger.warning_advice`]. For example:
```bash
DIFFUSERS_NO_ADVISORY_WARNINGS=1 ./myprogram.py
```
Here is an example of how to use the same logger as the library in your own module or script:
```python
from diffusers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger("diffusers")
logger.info("INFO")
logger.warning("WARN")
```
All the methods of this logging module are documented below, the main ones are
[`logging.get_verbosity`] to get the current level of verbosity in the logger and
[`logging.set_verbosity`] to set the verbosity to the level of your choice. In order (from the least
verbose to the most verbose), those levels (with their corresponding int values in parenthesis) are:
- `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` (int value, 50): only report the most
critical errors.
- `diffusers.logging.ERROR` (int value, 40): only report errors.
- `diffusers.logging.WARNING` or `diffusers.logging.WARN` (int value, 30): only reports error and
warnings. This the default level used by the library.
- `diffusers.logging.INFO` (int value, 20): reports error, warnings and basic information.
- `diffusers.logging.DEBUG` (int value, 10): report all information.
By default, `tqdm` progress bars will be displayed during model download. [`logging.disable_progress_bar`] and [`logging.enable_progress_bar`] can be used to suppress or unsuppress this behavior.
## Base setters
[[autodoc]] logging.set_verbosity_error
[[autodoc]] logging.set_verbosity_warning
[[autodoc]] logging.set_verbosity_info
[[autodoc]] logging.set_verbosity_debug
## Other functions
[[autodoc]] logging.get_verbosity
[[autodoc]] logging.set_verbosity
[[autodoc]] logging.get_logger
[[autodoc]] logging.enable_default_handler
[[autodoc]] logging.disable_default_handler
[[autodoc]] logging.enable_explicit_format
[[autodoc]] logging.reset_format
[[autodoc]] logging.enable_progress_bar
[[autodoc]] logging.disable_progress_bar

View File

@@ -24,6 +24,7 @@ from .schedulers import (
SchedulerMixin,
ScoreSdeVeScheduler,
)
from .utils import logging
if is_scipy_available():