mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
tie embedding issue.
This commit is contained in:
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -97,7 +97,8 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -2,7 +2,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -13,9 +13,7 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import (
|
||||
torch_device,
|
||||
)
|
||||
from ...testing_utils import torch_device
|
||||
from ..test_pipelines_common import PipelineTesterMixin, check_qkv_fused_layers_exist
|
||||
|
||||
|
||||
@@ -70,7 +68,8 @@ class FluxControlNetImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMi
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,15 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
# torch_device, # {{ edit_1 }} Removed unused import
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -22,11 +14,7 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
torch_device,
|
||||
)
|
||||
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
@@ -85,7 +73,8 @@ class FluxControlNetInpaintPipelineTests(unittest.TestCase, PipelineTesterMixin)
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -17,7 +17,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -28,10 +35,7 @@ from diffusers import (
|
||||
from diffusers.models import SD3ControlNetModel
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
@@ -103,7 +107,8 @@ class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, Pipe
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -19,7 +19,14 @@ from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -118,7 +125,8 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -4,7 +4,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -91,7 +91,8 @@ class FluxPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -53,7 +53,8 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -57,7 +57,8 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -58,7 +58,8 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -58,7 +58,8 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,7 +55,8 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,7 +55,8 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,7 +79,8 @@ class FluxKontextPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,7 +79,8 @@ class FluxKontextInpaintPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline
|
||||
|
||||
@@ -72,7 +79,9 @@ class StableDiffusion3PipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -4,7 +4,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -73,7 +80,9 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -3,7 +3,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -73,7 +80,9 @@ class StableDiffusion3InpaintPipelineFastTests(PipelineLatentTesterMixin, unitte
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
Reference in New Issue
Block a user