1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

tie embedding issue.

This commit is contained in:
sayakpaul
2026-01-19 13:43:47 +05:30
parent 7b55da8846
commit 3dcb97c9ea
17 changed files with 92 additions and 54 deletions

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
@@ -97,7 +97,8 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -2,7 +2,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -13,9 +13,7 @@ from diffusers import (
)
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
torch_device,
)
from ...testing_utils import torch_device
from ..test_pipelines_common import PipelineTesterMixin, check_qkv_fused_layers_exist
@@ -70,7 +68,8 @@ class FluxControlNetImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMi
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,15 +3,7 @@ import unittest
import numpy as np
import torch
# torch_device, # {{ edit_1 }} Removed unused import
from transformers import (
AutoTokenizer,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
T5EncoderModel,
)
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -22,11 +14,7 @@ from diffusers import (
)
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
floats_tensor,
torch_device,
)
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..test_pipelines_common import PipelineTesterMixin
@@ -85,7 +73,8 @@ class FluxControlNetInpaintPipelineTests(unittest.TestCase, PipelineTesterMixin)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -17,7 +17,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -28,10 +35,7 @@ from diffusers import (
from diffusers.models import SD3ControlNetModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ...testing_utils import enable_full_determinism, torch_device
from ..test_pipelines_common import PipelineTesterMixin
@@ -103,7 +107,8 @@ class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, Pipe
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -19,7 +19,14 @@ from typing import Optional
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -118,7 +125,8 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -4,7 +4,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -91,7 +91,8 @@ class FluxPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
@@ -53,7 +53,8 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -57,7 +57,8 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -58,7 +58,8 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
@@ -58,7 +58,8 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
@@ -55,7 +55,8 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
@@ -55,7 +55,8 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,8 @@ class FluxKontextPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,8 @@ class FluxKontextInpaintPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline
@@ -72,7 +79,9 @@ class StableDiffusion3PipelineFastTests(unittest.TestCase, PipelineTesterMixin):
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -4,7 +4,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -73,7 +80,9 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -3,7 +3,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -73,7 +80,9 @@ class StableDiffusion3InpaintPipelineFastTests(PipelineLatentTesterMixin, unitte
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")