mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Module-ise "original stable diffusion to diffusers" conversion script (#2019)
* convert __main__ to a function call and call it * add missing type hint * make style check pass * move loading to src/diffusers Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
@@ -15,772 +15,8 @@
|
||||
""" Conversion script for the LDM checkpoints. """
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors import safe_open
|
||||
|
||||
|
||||
try:
|
||||
from omegaconf import OmegaConf
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
LDMTextToImagePipeline,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
StableDiffusionPipeline,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
|
||||
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
||||
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
||||
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
"""
|
||||
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
||||
"""
|
||||
if n_shave_prefix_segments >= 0:
|
||||
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
||||
else:
|
||||
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
||||
|
||||
|
||||
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item.replace("in_layers.0", "norm1")
|
||||
new_item = new_item.replace("in_layers.2", "conv1")
|
||||
|
||||
new_item = new_item.replace("out_layers.0", "norm2")
|
||||
new_item = new_item.replace("out_layers.3", "conv2")
|
||||
|
||||
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
||||
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
||||
|
||||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
||||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
||||
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
||||
|
||||
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
||||
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
||||
|
||||
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
||||
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
||||
|
||||
new_item = new_item.replace("q.weight", "query.weight")
|
||||
new_item = new_item.replace("q.bias", "query.bias")
|
||||
|
||||
new_item = new_item.replace("k.weight", "key.weight")
|
||||
new_item = new_item.replace("k.bias", "key.bias")
|
||||
|
||||
new_item = new_item.replace("v.weight", "value.weight")
|
||||
new_item = new_item.replace("v.bias", "value.bias")
|
||||
|
||||
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
||||
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
||||
|
||||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def assign_to_checkpoint(
|
||||
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
||||
):
|
||||
"""
|
||||
This does the final conversion step: take locally converted weights and apply a global renaming
|
||||
to them. It splits attention layers, and takes into account additional replacements
|
||||
that may arise.
|
||||
|
||||
Assigns the weights to the new checkpoint.
|
||||
"""
|
||||
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
||||
|
||||
# Splits the attention layers into three variables.
|
||||
if attention_paths_to_split is not None:
|
||||
for path, path_map in attention_paths_to_split.items():
|
||||
old_tensor = old_checkpoint[path]
|
||||
channels = old_tensor.shape[0] // 3
|
||||
|
||||
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
||||
|
||||
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
||||
|
||||
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
||||
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
||||
|
||||
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
||||
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
||||
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
||||
|
||||
for path in paths:
|
||||
new_path = path["new"]
|
||||
|
||||
# These have already been assigned
|
||||
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
||||
continue
|
||||
|
||||
# Global renaming happens here
|
||||
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
||||
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
||||
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
||||
|
||||
if additional_replacements is not None:
|
||||
for replacement in additional_replacements:
|
||||
new_path = new_path.replace(replacement["old"], replacement["new"])
|
||||
|
||||
# proj_attn.weight has to be converted from conv 1D to linear
|
||||
if "proj_attn.weight" in new_path:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
||||
else:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]]
|
||||
|
||||
|
||||
def conv_attn_to_linear(checkpoint):
|
||||
keys = list(checkpoint.keys())
|
||||
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
||||
for key in keys:
|
||||
if ".".join(key.split(".")[-2:]) in attn_keys:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||||
elif "proj_attn.weight" in key:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0]
|
||||
|
||||
|
||||
def create_unet_diffusers_config(original_config, image_size: int):
|
||||
"""
|
||||
Creates a config for the diffusers based on the config of the LDM model.
|
||||
"""
|
||||
unet_params = original_config.model.params.unet_config.params
|
||||
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
||||
|
||||
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
||||
|
||||
down_block_types = []
|
||||
resolution = 1
|
||||
for i in range(len(block_out_channels)):
|
||||
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
|
||||
down_block_types.append(block_type)
|
||||
if i != len(block_out_channels) - 1:
|
||||
resolution *= 2
|
||||
|
||||
up_block_types = []
|
||||
for i in range(len(block_out_channels)):
|
||||
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
|
||||
up_block_types.append(block_type)
|
||||
resolution //= 2
|
||||
|
||||
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
||||
|
||||
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
||||
use_linear_projection = (
|
||||
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
|
||||
)
|
||||
if use_linear_projection:
|
||||
# stable diffusion 2-base-512 and 2-768
|
||||
if head_dim is None:
|
||||
head_dim = [5, 10, 20, 20]
|
||||
|
||||
config = dict(
|
||||
sample_size=image_size // vae_scale_factor,
|
||||
in_channels=unet_params.in_channels,
|
||||
out_channels=unet_params.out_channels,
|
||||
down_block_types=tuple(down_block_types),
|
||||
up_block_types=tuple(up_block_types),
|
||||
block_out_channels=tuple(block_out_channels),
|
||||
layers_per_block=unet_params.num_res_blocks,
|
||||
cross_attention_dim=unet_params.context_dim,
|
||||
attention_head_dim=head_dim,
|
||||
use_linear_projection=use_linear_projection,
|
||||
)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def create_vae_diffusers_config(original_config, image_size: int):
|
||||
"""
|
||||
Creates a config for the diffusers based on the config of the LDM model.
|
||||
"""
|
||||
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
||||
_ = original_config.model.params.first_stage_config.params.embed_dim
|
||||
|
||||
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
||||
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
||||
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
||||
|
||||
config = dict(
|
||||
sample_size=image_size,
|
||||
in_channels=vae_params.in_channels,
|
||||
out_channels=vae_params.out_ch,
|
||||
down_block_types=tuple(down_block_types),
|
||||
up_block_types=tuple(up_block_types),
|
||||
block_out_channels=tuple(block_out_channels),
|
||||
latent_channels=vae_params.z_channels,
|
||||
layers_per_block=vae_params.num_res_blocks,
|
||||
)
|
||||
return config
|
||||
|
||||
|
||||
def create_diffusers_schedular(original_config):
|
||||
schedular = DDIMScheduler(
|
||||
num_train_timesteps=original_config.model.params.timesteps,
|
||||
beta_start=original_config.model.params.linear_start,
|
||||
beta_end=original_config.model.params.linear_end,
|
||||
beta_schedule="scaled_linear",
|
||||
)
|
||||
return schedular
|
||||
|
||||
|
||||
def create_ldm_bert_config(original_config):
|
||||
bert_params = original_config.model.parms.cond_stage_config.params
|
||||
config = LDMBertConfig(
|
||||
d_model=bert_params.n_embed,
|
||||
encoder_layers=bert_params.n_layer,
|
||||
encoder_ffn_dim=bert_params.n_embed * 4,
|
||||
)
|
||||
return config
|
||||
|
||||
|
||||
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
||||
"""
|
||||
Takes a state dict and a config, and returns a converted checkpoint.
|
||||
"""
|
||||
|
||||
# extract state_dict for UNet
|
||||
unet_state_dict = {}
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
unet_key = "model.diffusion_model."
|
||||
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
||||
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
|
||||
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
||||
print(
|
||||
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
||||
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
||||
)
|
||||
for key in keys:
|
||||
if key.startswith("model.diffusion_model"):
|
||||
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
||||
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
||||
else:
|
||||
if sum(k.startswith("model_ema") for k in keys) > 100:
|
||||
print(
|
||||
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
||||
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
||||
)
|
||||
|
||||
for key in keys:
|
||||
if key.startswith(unet_key):
|
||||
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
||||
|
||||
new_checkpoint = {}
|
||||
|
||||
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
||||
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
||||
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
||||
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
||||
|
||||
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
||||
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
||||
|
||||
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
||||
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
||||
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
||||
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
||||
|
||||
# Retrieves the keys for the input blocks only
|
||||
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
||||
input_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_input_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the middle blocks only
|
||||
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
||||
middle_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
||||
for layer_id in range(num_middle_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the output blocks only
|
||||
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
||||
output_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_output_blocks)
|
||||
}
|
||||
|
||||
for i in range(1, num_input_blocks):
|
||||
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
||||
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
||||
|
||||
resnets = [
|
||||
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
||||
]
|
||||
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
||||
|
||||
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.weight"
|
||||
)
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.bias"
|
||||
)
|
||||
|
||||
paths = renew_resnet_paths(resnets)
|
||||
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
if len(attentions):
|
||||
paths = renew_attention_paths(attentions)
|
||||
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
resnet_0 = middle_blocks[0]
|
||||
attentions = middle_blocks[1]
|
||||
resnet_1 = middle_blocks[2]
|
||||
|
||||
resnet_0_paths = renew_resnet_paths(resnet_0)
|
||||
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
||||
|
||||
resnet_1_paths = renew_resnet_paths(resnet_1)
|
||||
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
||||
|
||||
attentions_paths = renew_attention_paths(attentions)
|
||||
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(
|
||||
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
for i in range(num_output_blocks):
|
||||
block_id = i // (config["layers_per_block"] + 1)
|
||||
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
||||
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
||||
output_block_list = {}
|
||||
|
||||
for layer in output_block_layers:
|
||||
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
||||
if layer_id in output_block_list:
|
||||
output_block_list[layer_id].append(layer_name)
|
||||
else:
|
||||
output_block_list[layer_id] = [layer_name]
|
||||
|
||||
if len(output_block_list) > 1:
|
||||
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
||||
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
||||
|
||||
resnet_0_paths = renew_resnet_paths(resnets)
|
||||
paths = renew_resnet_paths(resnets)
|
||||
|
||||
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
||||
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
||||
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.weight"
|
||||
]
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.bias"
|
||||
]
|
||||
|
||||
# Clear attentions as they have been attributed above.
|
||||
if len(attentions) == 2:
|
||||
attentions = []
|
||||
|
||||
if len(attentions):
|
||||
paths = renew_attention_paths(attentions)
|
||||
meta_path = {
|
||||
"old": f"output_blocks.{i}.1",
|
||||
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
||||
}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
else:
|
||||
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
||||
for path in resnet_0_paths:
|
||||
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
||||
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
||||
|
||||
new_checkpoint[new_path] = unet_state_dict[old_path]
|
||||
|
||||
return new_checkpoint
|
||||
|
||||
|
||||
def convert_ldm_vae_checkpoint(checkpoint, config):
|
||||
# extract state dict for VAE
|
||||
vae_state_dict = {}
|
||||
vae_key = "first_stage_model."
|
||||
keys = list(checkpoint.keys())
|
||||
for key in keys:
|
||||
if key.startswith(vae_key):
|
||||
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
||||
|
||||
new_checkpoint = {}
|
||||
|
||||
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
||||
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
||||
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
||||
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
||||
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
||||
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
||||
|
||||
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
||||
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
||||
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
||||
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
||||
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
||||
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
||||
|
||||
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
||||
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
||||
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
||||
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
||||
|
||||
# Retrieves the keys for the encoder down blocks only
|
||||
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
||||
down_blocks = {
|
||||
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the decoder up blocks only
|
||||
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
||||
up_blocks = {
|
||||
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
||||
}
|
||||
|
||||
for i in range(num_down_blocks):
|
||||
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
||||
|
||||
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
||||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
||||
f"encoder.down.{i}.downsample.conv.weight"
|
||||
)
|
||||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
||||
f"encoder.down.{i}.downsample.conv.bias"
|
||||
)
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
||||
num_mid_res_blocks = 2
|
||||
for i in range(1, num_mid_res_blocks + 1):
|
||||
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
||||
paths = renew_vae_attention_paths(mid_attentions)
|
||||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
conv_attn_to_linear(new_checkpoint)
|
||||
|
||||
for i in range(num_up_blocks):
|
||||
block_id = num_up_blocks - 1 - i
|
||||
resnets = [
|
||||
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
||||
]
|
||||
|
||||
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
||||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
||||
f"decoder.up.{block_id}.upsample.conv.weight"
|
||||
]
|
||||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
||||
f"decoder.up.{block_id}.upsample.conv.bias"
|
||||
]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
||||
num_mid_res_blocks = 2
|
||||
for i in range(1, num_mid_res_blocks + 1):
|
||||
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
||||
paths = renew_vae_attention_paths(mid_attentions)
|
||||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
conv_attn_to_linear(new_checkpoint)
|
||||
return new_checkpoint
|
||||
|
||||
|
||||
def convert_ldm_bert_checkpoint(checkpoint, config):
|
||||
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
||||
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
|
||||
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
|
||||
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
|
||||
|
||||
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
|
||||
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
|
||||
|
||||
def _copy_linear(hf_linear, pt_linear):
|
||||
hf_linear.weight = pt_linear.weight
|
||||
hf_linear.bias = pt_linear.bias
|
||||
|
||||
def _copy_layer(hf_layer, pt_layer):
|
||||
# copy layer norms
|
||||
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
|
||||
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
|
||||
|
||||
# copy attn
|
||||
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
|
||||
|
||||
# copy MLP
|
||||
pt_mlp = pt_layer[1][1]
|
||||
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
|
||||
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
|
||||
|
||||
def _copy_layers(hf_layers, pt_layers):
|
||||
for i, hf_layer in enumerate(hf_layers):
|
||||
if i != 0:
|
||||
i += i
|
||||
pt_layer = pt_layers[i : i + 2]
|
||||
_copy_layer(hf_layer, pt_layer)
|
||||
|
||||
hf_model = LDMBertModel(config).eval()
|
||||
|
||||
# copy embeds
|
||||
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
|
||||
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
|
||||
|
||||
# copy layer norm
|
||||
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
|
||||
|
||||
# copy hidden layers
|
||||
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
|
||||
|
||||
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
|
||||
|
||||
return hf_model
|
||||
|
||||
|
||||
def convert_ldm_clip_checkpoint(checkpoint):
|
||||
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
||||
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
text_model_dict = {}
|
||||
|
||||
for key in keys:
|
||||
if key.startswith("cond_stage_model.transformer"):
|
||||
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
||||
|
||||
text_model.load_state_dict(text_model_dict)
|
||||
|
||||
return text_model
|
||||
|
||||
|
||||
textenc_conversion_lst = [
|
||||
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
|
||||
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
|
||||
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
|
||||
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
|
||||
]
|
||||
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
|
||||
|
||||
textenc_transformer_conversion_lst = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("resblocks.", "text_model.encoder.layers."),
|
||||
("ln_1", "layer_norm1"),
|
||||
("ln_2", "layer_norm2"),
|
||||
(".c_fc.", ".fc1."),
|
||||
(".c_proj.", ".fc2."),
|
||||
(".attn", ".self_attn"),
|
||||
("ln_final.", "transformer.text_model.final_layer_norm."),
|
||||
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
||||
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
||||
]
|
||||
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
|
||||
textenc_pattern = re.compile("|".join(protected.keys()))
|
||||
|
||||
|
||||
def convert_paint_by_example_checkpoint(checkpoint):
|
||||
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14")
|
||||
model = PaintByExampleImageEncoder(config)
|
||||
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
text_model_dict = {}
|
||||
|
||||
for key in keys:
|
||||
if key.startswith("cond_stage_model.transformer"):
|
||||
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
||||
|
||||
# load clip vision
|
||||
model.model.load_state_dict(text_model_dict)
|
||||
|
||||
# load mapper
|
||||
keys_mapper = {
|
||||
k[len("cond_stage_model.mapper.res") :]: v
|
||||
for k, v in checkpoint.items()
|
||||
if k.startswith("cond_stage_model.mapper")
|
||||
}
|
||||
|
||||
MAPPING = {
|
||||
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
|
||||
"attn.c_proj": ["attn1.to_out.0"],
|
||||
"ln_1": ["norm1"],
|
||||
"ln_2": ["norm3"],
|
||||
"mlp.c_fc": ["ff.net.0.proj"],
|
||||
"mlp.c_proj": ["ff.net.2"],
|
||||
}
|
||||
|
||||
mapped_weights = {}
|
||||
for key, value in keys_mapper.items():
|
||||
prefix = key[: len("blocks.i")]
|
||||
suffix = key.split(prefix)[-1].split(".")[-1]
|
||||
name = key.split(prefix)[-1].split(suffix)[0][1:-1]
|
||||
mapped_names = MAPPING[name]
|
||||
|
||||
num_splits = len(mapped_names)
|
||||
for i, mapped_name in enumerate(mapped_names):
|
||||
new_name = ".".join([prefix, mapped_name, suffix])
|
||||
shape = value.shape[0] // num_splits
|
||||
mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
|
||||
|
||||
model.mapper.load_state_dict(mapped_weights)
|
||||
|
||||
# load final layer norm
|
||||
model.final_layer_norm.load_state_dict(
|
||||
{
|
||||
"bias": checkpoint["cond_stage_model.final_ln.bias"],
|
||||
"weight": checkpoint["cond_stage_model.final_ln.weight"],
|
||||
}
|
||||
)
|
||||
|
||||
# load final proj
|
||||
model.proj_out.load_state_dict(
|
||||
{
|
||||
"bias": checkpoint["proj_out.bias"],
|
||||
"weight": checkpoint["proj_out.weight"],
|
||||
}
|
||||
)
|
||||
|
||||
# load uncond vector
|
||||
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
|
||||
return model
|
||||
|
||||
|
||||
def convert_open_clip_checkpoint(checkpoint):
|
||||
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")
|
||||
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
text_model_dict = {}
|
||||
|
||||
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
||||
|
||||
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
|
||||
|
||||
for key in keys:
|
||||
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
|
||||
continue
|
||||
if key in textenc_conversion_map:
|
||||
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
|
||||
if key.startswith("cond_stage_model.model.transformer."):
|
||||
new_key = key[len("cond_stage_model.model.transformer.") :]
|
||||
if new_key.endswith(".in_proj_weight"):
|
||||
new_key = new_key[: -len(".in_proj_weight")]
|
||||
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
||||
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
|
||||
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
|
||||
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
|
||||
elif new_key.endswith(".in_proj_bias"):
|
||||
new_key = new_key[: -len(".in_proj_bias")]
|
||||
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
||||
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
|
||||
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
|
||||
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
|
||||
else:
|
||||
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
||||
|
||||
text_model_dict[new_key] = checkpoint[key]
|
||||
|
||||
text_model.load_state_dict(text_model_dict)
|
||||
|
||||
return text_model
|
||||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import load_pipeline_from_original_stable_diffusion_ckpt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -841,11 +77,6 @@ if __name__ == "__main__":
|
||||
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--from_safetensors",
|
||||
action="store_true",
|
||||
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--upcast_attention",
|
||||
default=False,
|
||||
@@ -855,185 +86,30 @@ if __name__ == "__main__":
|
||||
" diffusion 2.1."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--from_safetensors",
|
||||
action="store_true",
|
||||
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--to_safetensors",
|
||||
action="store_true",
|
||||
help="Whether to store pipeline in safetensors format or not.",
|
||||
)
|
||||
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
||||
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
||||
args = parser.parse_args()
|
||||
|
||||
image_size = args.image_size
|
||||
prediction_type = args.prediction_type
|
||||
|
||||
if args.from_safetensors:
|
||||
checkpoint = {}
|
||||
with safe_open(args.checkpoint_path, framework="pt", device="cpu") as f:
|
||||
for key in f.keys():
|
||||
checkpoint[key] = f.get_tensor(key)
|
||||
else:
|
||||
if args.device is None:
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
checkpoint = torch.load(args.checkpoint_path, map_location=device)
|
||||
else:
|
||||
checkpoint = torch.load(args.checkpoint_path, map_location=args.device)
|
||||
|
||||
# Sometimes models don't have the global_step item
|
||||
if "global_step" in checkpoint:
|
||||
global_step = checkpoint["global_step"]
|
||||
else:
|
||||
print("global_step key not found in model")
|
||||
global_step = None
|
||||
|
||||
if "state_dict" in checkpoint:
|
||||
checkpoint = checkpoint["state_dict"]
|
||||
|
||||
upcast_attention = args.upcast_attention
|
||||
if args.original_config_file is None:
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
|
||||
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
|
||||
if not os.path.isfile("v2-inference-v.yaml"):
|
||||
# model_type = "v2"
|
||||
os.system(
|
||||
"wget https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
||||
" -O v2-inference-v.yaml"
|
||||
)
|
||||
args.original_config_file = "./v2-inference-v.yaml"
|
||||
|
||||
if global_step == 110000:
|
||||
# v2.1 needs to upcast attention
|
||||
upcast_attention = True
|
||||
else:
|
||||
if not os.path.isfile("v1-inference.yaml"):
|
||||
# model_type = "v1"
|
||||
os.system(
|
||||
"wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
||||
" -O v1-inference.yaml"
|
||||
)
|
||||
args.original_config_file = "./v1-inference.yaml"
|
||||
|
||||
original_config = OmegaConf.load(args.original_config_file)
|
||||
|
||||
if args.num_in_channels is not None:
|
||||
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = args.num_in_channels
|
||||
|
||||
if (
|
||||
"parameterization" in original_config["model"]["params"]
|
||||
and original_config["model"]["params"]["parameterization"] == "v"
|
||||
):
|
||||
if prediction_type is None:
|
||||
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
|
||||
# as it relies on a brittle global step parameter here
|
||||
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
|
||||
if image_size is None:
|
||||
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
|
||||
# as it relies on a brittle global step parameter here
|
||||
image_size = 512 if global_step == 875000 else 768
|
||||
else:
|
||||
if prediction_type is None:
|
||||
prediction_type = "epsilon"
|
||||
if image_size is None:
|
||||
image_size = 512
|
||||
|
||||
num_train_timesteps = original_config.model.params.timesteps
|
||||
beta_start = original_config.model.params.linear_start
|
||||
beta_end = original_config.model.params.linear_end
|
||||
|
||||
scheduler = DDIMScheduler(
|
||||
beta_end=beta_end,
|
||||
beta_schedule="scaled_linear",
|
||||
beta_start=beta_start,
|
||||
num_train_timesteps=num_train_timesteps,
|
||||
steps_offset=1,
|
||||
clip_sample=False,
|
||||
set_alpha_to_one=False,
|
||||
prediction_type=prediction_type,
|
||||
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
checkpoint_path=args.checkpoint_path,
|
||||
original_config_file=args.original_config_file,
|
||||
image_size=args.image_size,
|
||||
prediction_type=args.prediction_type,
|
||||
model_type=args.pipeline_type,
|
||||
extract_ema=args.extract_ema,
|
||||
scheduler_type=args.scheduler_type,
|
||||
num_in_channels=args.num_in_channels,
|
||||
upcast_attention=args.upcast_attention,
|
||||
from_safetensors=args.from_safetensors,
|
||||
)
|
||||
# make sure scheduler works correctly with DDIM
|
||||
scheduler.register_to_config(clip_sample=False)
|
||||
|
||||
if args.scheduler_type == "pndm":
|
||||
config = dict(scheduler.config)
|
||||
config["skip_prk_steps"] = True
|
||||
scheduler = PNDMScheduler.from_config(config)
|
||||
elif args.scheduler_type == "lms":
|
||||
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
||||
elif args.scheduler_type == "heun":
|
||||
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
||||
elif args.scheduler_type == "euler":
|
||||
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
||||
elif args.scheduler_type == "euler-ancestral":
|
||||
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
||||
elif args.scheduler_type == "dpm":
|
||||
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
||||
elif args.scheduler_type == "ddim":
|
||||
scheduler = scheduler
|
||||
else:
|
||||
raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!")
|
||||
|
||||
# Convert the UNet2DConditionModel model.
|
||||
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
||||
unet_config["upcast_attention"] = upcast_attention
|
||||
unet = UNet2DConditionModel(**unet_config)
|
||||
|
||||
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
||||
checkpoint, unet_config, path=args.checkpoint_path, extract_ema=args.extract_ema
|
||||
)
|
||||
|
||||
unet.load_state_dict(converted_unet_checkpoint)
|
||||
|
||||
# Convert the VAE model.
|
||||
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
||||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
||||
|
||||
vae = AutoencoderKL(**vae_config)
|
||||
vae.load_state_dict(converted_vae_checkpoint)
|
||||
|
||||
# Convert the text model.
|
||||
model_type = args.pipeline_type
|
||||
if model_type is None:
|
||||
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
|
||||
|
||||
if model_type == "FrozenOpenCLIPEmbedder":
|
||||
text_model = convert_open_clip_checkpoint(checkpoint)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2", subfolder="tokenizer")
|
||||
pipe = StableDiffusionPipeline(
|
||||
vae=vae,
|
||||
text_encoder=text_model,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
elif model_type == "PaintByExample":
|
||||
vision_model = convert_paint_by_example_checkpoint(checkpoint)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
||||
pipe = PaintByExamplePipeline(
|
||||
vae=vae,
|
||||
image_encoder=vision_model,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
elif model_type == "FrozenCLIPEmbedder":
|
||||
text_model = convert_ldm_clip_checkpoint(checkpoint)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
||||
pipe = StableDiffusionPipeline(
|
||||
vae=vae,
|
||||
text_encoder=text_model,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
else:
|
||||
text_config = create_ldm_bert_config(original_config)
|
||||
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
|
||||
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
||||
|
||||
pipe.save_pretrained(args.dump_path)
|
||||
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
||||
|
||||
1007
src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py
Normal file
1007
src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -48,6 +48,7 @@ from .import_utils import (
|
||||
is_k_diffusion_available,
|
||||
is_k_diffusion_version,
|
||||
is_librosa_available,
|
||||
is_omegaconf_available,
|
||||
is_onnx_available,
|
||||
is_safetensors_available,
|
||||
is_scipy_available,
|
||||
|
||||
@@ -213,10 +213,17 @@ except importlib_metadata.PackageNotFoundError:
|
||||
_wandb_available = importlib.util.find_spec("wandb") is not None
|
||||
try:
|
||||
_wandb_version = importlib_metadata.version("wandb")
|
||||
logger.debug(f"Successfully imported k-diffusion version {_wandb_version }")
|
||||
logger.debug(f"Successfully imported wandb version {_wandb_version }")
|
||||
except importlib_metadata.PackageNotFoundError:
|
||||
_wandb_available = False
|
||||
|
||||
_omegaconf_available = importlib.util.find_spec("omegaconf") is not None
|
||||
try:
|
||||
_omegaconf_version = importlib_metadata.version("omegaconf")
|
||||
logger.debug(f"Successfully imported omegaconf version {_omegaconf_version}")
|
||||
except importlib_metadata.PackageNotFoundError:
|
||||
_omegaconf_available = False
|
||||
|
||||
|
||||
def is_torch_available():
|
||||
return _torch_available
|
||||
@@ -274,6 +281,10 @@ def is_wandb_available():
|
||||
return _wandb_available
|
||||
|
||||
|
||||
def is_omegaconf_available():
|
||||
return _omegaconf_available
|
||||
|
||||
|
||||
# docstyle-ignore
|
||||
FLAX_IMPORT_ERROR = """
|
||||
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
|
||||
@@ -334,6 +345,11 @@ WANDB_IMPORT_ERROR = """
|
||||
install wandb`
|
||||
"""
|
||||
|
||||
# docstyle-ignore
|
||||
OMEGACONF_IMPORT_ERROR = """
|
||||
{0} requires the omegaconf library but it was not found in your environment. You can install it with pip: `pip
|
||||
install omegaconf`
|
||||
"""
|
||||
|
||||
BACKENDS_MAPPING = OrderedDict(
|
||||
[
|
||||
@@ -347,6 +363,7 @@ BACKENDS_MAPPING = OrderedDict(
|
||||
("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
|
||||
("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
|
||||
("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
|
||||
("omageconf", (is_omegaconf_available, OMEGACONF_IMPORT_ERROR)),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user