mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
working state form hameerabbasi and iddl (transformer)
This commit is contained in:
636
src/diffusers/models/transformers/transformer_chroma.py
Normal file
636
src/diffusers/models/transformers/transformer_chroma.py
Normal file
@@ -0,0 +1,636 @@
|
||||
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ...utils.import_utils import is_torch_npu_available
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..attention import FeedForward
|
||||
from ..attention_processor import (
|
||||
Attention,
|
||||
AttentionProcessor,
|
||||
FluxAttnProcessor2_0,
|
||||
FluxAttnProcessor2_0_NPU,
|
||||
FusedFluxAttnProcessor2_0,
|
||||
)
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..embeddings import (
|
||||
CombinedTimestepGuidanceTextProjEmbeddings,
|
||||
CombinedTimestepTextProjChromaEmbeddings,
|
||||
CombinedTimestepTextProjEmbeddings,
|
||||
ChromaApproximator,
|
||||
FluxPosEmbed,
|
||||
)
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import (
|
||||
AdaLayerNormContinuous,
|
||||
AdaLayerNormContinuousPruned,
|
||||
AdaLayerNormZero,
|
||||
AdaLayerNormZeroPruned,
|
||||
AdaLayerNormZeroSingle,
|
||||
AdaLayerNormZeroSinglePruned,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
INVALID_VARIANT_ERRMSG = "`variant` must be `'flux' or `'chroma'`."
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FluxSingleTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
variant: str = "flux",
|
||||
):
|
||||
super().__init__()
|
||||
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
|
||||
if variant == "flux":
|
||||
self.norm = AdaLayerNormZeroSingle(dim)
|
||||
elif variant == "chroma":
|
||||
self.norm = AdaLayerNormZeroSinglePruned(dim)
|
||||
else:
|
||||
raise ValueError(INVALID_VARIANT_ERRMSG)
|
||||
|
||||
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
||||
self.act_mlp = nn.GELU(approximate="tanh")
|
||||
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
||||
|
||||
if is_torch_npu_available():
|
||||
deprecation_message = (
|
||||
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
|
||||
"should be set explicitly using the `set_attn_processor` method."
|
||||
)
|
||||
deprecate("npu_processor", "0.34.0", deprecation_message)
|
||||
processor = FluxAttnProcessor2_0_NPU()
|
||||
else:
|
||||
processor = FluxAttnProcessor2_0()
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
processor=processor,
|
||||
qk_norm="rms_norm",
|
||||
eps=1e-6,
|
||||
pre_only=True,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> torch.Tensor:
|
||||
residual = hidden_states
|
||||
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
||||
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
||||
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||
attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
**joint_attention_kwargs,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
||||
gate = gate.unsqueeze(1)
|
||||
hidden_states = gate * self.proj_out(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
if hidden_states.dtype == torch.float16:
|
||||
hidden_states = hidden_states.clip(-65504, 65504)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FluxTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
qk_norm: str = "rms_norm",
|
||||
eps: float = 1e-6,
|
||||
variant: str = "flux",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if variant == "flux":
|
||||
self.norm1 = AdaLayerNormZero(dim)
|
||||
self.norm1_context = AdaLayerNormZero(dim)
|
||||
elif variant == "chroma":
|
||||
self.norm1 = AdaLayerNormZeroPruned(dim)
|
||||
self.norm1_context = AdaLayerNormZeroPruned(dim)
|
||||
else:
|
||||
raise ValueError(INVALID_VARIANT_ERRMSG)
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
added_kv_proj_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
context_pre_only=False,
|
||||
bias=True,
|
||||
processor=FluxAttnProcessor2_0(),
|
||||
qk_norm=qk_norm,
|
||||
eps=eps,
|
||||
)
|
||||
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
temb_img, temb_txt = temb[:, :6], temb[:, 6:]
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img)
|
||||
|
||||
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
||||
encoder_hidden_states, emb=temb_txt
|
||||
)
|
||||
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||
# Attention.
|
||||
attention_outputs = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
**joint_attention_kwargs,
|
||||
)
|
||||
|
||||
if len(attention_outputs) == 2:
|
||||
attn_output, context_attn_output = attention_outputs
|
||||
elif len(attention_outputs) == 3:
|
||||
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
||||
|
||||
# Process attention outputs for the `hidden_states`.
|
||||
attn_output = gate_msa.unsqueeze(1) * attn_output
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
||||
|
||||
hidden_states = hidden_states + ff_output
|
||||
if len(attention_outputs) == 3:
|
||||
hidden_states = hidden_states + ip_attn_output
|
||||
|
||||
# Process attention outputs for the `encoder_hidden_states`.
|
||||
|
||||
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
||||
|
||||
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
||||
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
|
||||
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
||||
if encoder_hidden_states.dtype == torch.float16:
|
||||
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
|
||||
class FluxTransformer2DModel(
|
||||
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin
|
||||
):
|
||||
"""
|
||||
The Transformer model introduced in Flux.
|
||||
|
||||
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
||||
|
||||
Args:
|
||||
patch_size (`int`, defaults to `1`):
|
||||
Patch size to turn the input data into small patches.
|
||||
in_channels (`int`, defaults to `64`):
|
||||
The number of channels in the input.
|
||||
out_channels (`int`, *optional*, defaults to `None`):
|
||||
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
||||
num_layers (`int`, defaults to `19`):
|
||||
The number of layers of dual stream DiT blocks to use.
|
||||
num_single_layers (`int`, defaults to `38`):
|
||||
The number of layers of single stream DiT blocks to use.
|
||||
attention_head_dim (`int`, defaults to `128`):
|
||||
The number of dimensions to use for each attention head.
|
||||
num_attention_heads (`int`, defaults to `24`):
|
||||
The number of attention heads to use.
|
||||
joint_attention_dim (`int`, defaults to `4096`):
|
||||
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
||||
`encoder_hidden_states`).
|
||||
pooled_projection_dim (`int`, defaults to `768`):
|
||||
The number of dimensions to use for the pooled projection.
|
||||
guidance_embeds (`bool`, defaults to `False`):
|
||||
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
||||
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
||||
The dimensions to use for the rotary positional embeddings.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
||||
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 1,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = None,
|
||||
num_layers: int = 19,
|
||||
num_single_layers: int = 38,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 4096,
|
||||
pooled_projection_dim: int = 768,
|
||||
guidance_embeds: bool = False,
|
||||
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
|
||||
variant: str = "flux",
|
||||
approximator_in_factor: int = 16,
|
||||
approximator_hidden_dim: int = 5120,
|
||||
approximator_layers: int = 5,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
||||
|
||||
if variant == "flux":
|
||||
text_time_guidance_cls = (
|
||||
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
||||
)
|
||||
self.time_text_embed = text_time_guidance_cls(
|
||||
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
||||
)
|
||||
elif variant == "chroma":
|
||||
self.time_text_embed = CombinedTimestepTextProjChromaEmbeddings(
|
||||
factor=approximator_in_factor,
|
||||
hidden_dim=approximator_hidden_dim,
|
||||
out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
|
||||
embedding_dim=self.inner_dim,
|
||||
n_layers=approximator_layers,
|
||||
)
|
||||
self.distilled_guidance_layer = ChromaApproximator(in_dim=64, out_dim=3072, hidden_dim=5120, n_layers=5)
|
||||
else:
|
||||
raise ValueError(INVALID_VARIANT_ERRMSG)
|
||||
|
||||
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
||||
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
FluxTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
variant=variant,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
FluxSingleTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
variant=variant,
|
||||
)
|
||||
for _ in range(num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
norm_out_cls = AdaLayerNormContinuous if variant != "chroma" else AdaLayerNormContinuousPruned
|
||||
self.norm_out = norm_out_cls(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
@property
|
||||
def is_chroma(self) -> bool:
|
||||
return isinstance(self.time_text_embed, CombinedTimestepTextProjChromaEmbeddings)
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
||||
def fuse_qkv_projections(self):
|
||||
"""
|
||||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
self.original_attn_processors = None
|
||||
|
||||
for _, attn_processor in self.attn_processors.items():
|
||||
if "Added" in str(attn_processor.__class__.__name__):
|
||||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||||
|
||||
self.original_attn_processors = self.attn_processors
|
||||
|
||||
for module in self.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self):
|
||||
"""Disables the fused QKV projection if enabled.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
if self.original_attn_processors is not None:
|
||||
self.set_attn_processor(self.original_attn_processors)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
pooled_projections: torch.Tensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
img_ids: torch.Tensor = None,
|
||||
txt_ids: torch.Tensor = None,
|
||||
guidance: torch.Tensor = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
controlnet_block_samples=None,
|
||||
controlnet_single_block_samples=None,
|
||||
return_dict: bool = True,
|
||||
controlnet_blocks_repeat: bool = False,
|
||||
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`FluxTransformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
||||
Input `hidden_states`.
|
||||
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
||||
from the embeddings of input conditions.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
||||
A list of tensors that if specified are added to the residuals of transformer blocks.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
is_chroma = self.is_chroma
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
timestep = timestep.to(hidden_states.dtype) * 1000
|
||||
if guidance is not None:
|
||||
guidance = guidance.to(hidden_states.dtype) * 1000
|
||||
|
||||
if not is_chroma:
|
||||
temb = (
|
||||
self.time_text_embed(timestep, pooled_projections)
|
||||
if guidance is None
|
||||
else self.time_text_embed(timestep, guidance, pooled_projections)
|
||||
)
|
||||
else:
|
||||
input_vec = self.time_text_embed(timestep, guidance, pooled_projections)
|
||||
pooled_temb = self.distilled_guidance_layer(input_vec)
|
||||
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
|
||||
if txt_ids.ndim == 3:
|
||||
logger.warning(
|
||||
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
||||
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
||||
)
|
||||
txt_ids = txt_ids[0]
|
||||
if img_ids.ndim == 3:
|
||||
logger.warning(
|
||||
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
||||
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
||||
)
|
||||
img_ids = img_ids[0]
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=0)
|
||||
image_rotary_emb = self.pos_embed(ids)
|
||||
|
||||
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
||||
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
||||
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
||||
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
||||
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
if is_chroma:
|
||||
img_offset = 3 * len(self.single_transformer_blocks)
|
||||
txt_offset = img_offset + 6 * len(self.transformer_blocks)
|
||||
img_modulation = img_offset + 6 * index_block
|
||||
text_modulation = txt_offset + 6 * index_block
|
||||
temb = torch.cat(
|
||||
(
|
||||
pooled_temb[:, img_modulation : img_modulation + 6],
|
||||
pooled_temb[:, text_modulation : text_modulation + 6],
|
||||
),
|
||||
dim=1,
|
||||
)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if controlnet_block_samples is not None:
|
||||
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
||||
interval_control = int(np.ceil(interval_control))
|
||||
# For Xlabs ControlNet.
|
||||
if controlnet_blocks_repeat:
|
||||
hidden_states = (
|
||||
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
||||
)
|
||||
else:
|
||||
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
for index_block, block in enumerate(self.single_transformer_blocks):
|
||||
if is_chroma:
|
||||
start_idx = 3 * index_block
|
||||
temb = pooled_temb[:, start_idx : start_idx + 3]
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if controlnet_single_block_samples is not None:
|
||||
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
||||
interval_control = int(np.ceil(interval_control))
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
+ controlnet_single_block_samples[index_block // interval_control]
|
||||
)
|
||||
|
||||
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
|
||||
if is_chroma:
|
||||
temb = pooled_temb[:, -2:]
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
output = self.proj_out(hidden_states)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
Reference in New Issue
Block a user