1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Modularize train_text_to_image_lora SD inferencing during and after training in example (#8283)

* Modularized the train_lora file

* Modularized the train_lora file

* Modularized the train_lora file

* Modularized the train_lora file

* Modularized the train_lora file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
This commit is contained in:
satani99
2024-05-29 10:08:02 +05:30
committed by GitHub
parent 581d8aacf7
commit 3bc3b48c10

View File

@@ -52,6 +52,9 @@ from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.29.0.dev0")
@@ -99,6 +102,48 @@ These are LoRA adaption weights for {base_model}. The weights were fine-tuned on
model_card.save(os.path.join(repo_folder, "README.md"))
def log_validation(
pipeline,
args,
accelerator,
epoch,
is_final_validation=False,
):
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator = generator.manual_seed(args.seed)
images = []
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
for _ in range(args.num_validation_images):
images.append(pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0])
for tracker in accelerator.trackers:
phase_name = "test" if is_final_validation else "validation"
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
phase_name: [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
]
}
)
return images
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
@@ -414,11 +459,6 @@ def main():
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
import wandb
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
@@ -864,10 +904,6 @@ def main():
if accelerator.is_main_process:
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
# create pipeline
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
@@ -876,38 +912,7 @@ def main():
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator = generator.manual_seed(args.seed)
images = []
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
for _ in range(args.num_validation_images):
images.append(
pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0]
)
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"validation": [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)
images = log_validation(pipeline, args, accelerator, epoch)
del pipeline
torch.cuda.empty_cache()
@@ -925,6 +930,22 @@ def main():
safe_serialization=True,
)
# Final inference
# Load previous pipeline
if args.validation_prompt is not None:
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
# load attention processors
pipeline.load_lora_weights(args.output_dir)
# run inference
images = log_validation(pipeline, args, accelerator, epoch, is_final_validation=True)
if args.push_to_hub:
save_model_card(
repo_id,
@@ -940,51 +961,6 @@ def main():
ignore_patterns=["step_*", "epoch_*"],
)
# Final inference
# Load previous pipeline
if args.validation_prompt is not None:
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
# load attention processors
pipeline.load_lora_weights(args.output_dir)
# run inference
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator = generator.manual_seed(args.seed)
images = []
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
for _ in range(args.num_validation_images):
images.append(
pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0]
)
for tracker in accelerator.trackers:
if len(images) != 0:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"test": [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)
accelerator.end_training()