mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Modify FlowMatch Scale Noise (#8678)
* initial fix * apply suggestion * delete step_index line
This commit is contained in:
@@ -852,7 +852,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_inference_steps)
|
||||
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
||||
|
||||
# 5. Prepare latent variables
|
||||
if latents is None:
|
||||
|
||||
@@ -126,10 +126,31 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
`torch.FloatTensor`:
|
||||
A scaled input sample.
|
||||
"""
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)
|
||||
|
||||
if sample.device.type == "mps" and torch.is_floating_point(timestep):
|
||||
# mps does not support float64
|
||||
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
|
||||
timestep = timestep.to(sample.device, dtype=torch.float32)
|
||||
else:
|
||||
schedule_timesteps = self.timesteps.to(sample.device)
|
||||
timestep = timestep.to(sample.device)
|
||||
|
||||
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
||||
if self.begin_index is None:
|
||||
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
|
||||
elif self.step_index is not None:
|
||||
# add_noise is called after first denoising step (for inpainting)
|
||||
step_indices = [self.step_index] * timestep.shape[0]
|
||||
else:
|
||||
# add noise is called before first denoising step to create initial latent(img2img)
|
||||
step_indices = [self.begin_index] * timestep.shape[0]
|
||||
|
||||
sigma = sigmas[step_indices].flatten()
|
||||
while len(sigma.shape) < len(sample.shape):
|
||||
sigma = sigma.unsqueeze(-1)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
sample = sigma * noise + (1.0 - sigma) * sample
|
||||
|
||||
return sample
|
||||
|
||||
Reference in New Issue
Block a user