mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
chore: fix help messages in advanced diffusion examples (#10923)
This commit is contained in:
@@ -79,13 +79,13 @@ This command will prompt you for a token. Copy-paste yours from your [settings/t
|
||||
### Target Modules
|
||||
When LoRA was first adapted from language models to diffusion models, it was applied to the cross-attention layers in the Unet that relate the image representations with the prompts that describe them.
|
||||
More recently, SOTA text-to-image diffusion models replaced the Unet with a diffusion Transformer(DiT). With this change, we may also want to explore
|
||||
applying LoRA training onto different types of layers and blocks. To allow more flexibility and control over the targeted modules we added `--lora_layers`- in which you can specify in a comma seperated string
|
||||
applying LoRA training onto different types of layers and blocks. To allow more flexibility and control over the targeted modules we added `--lora_layers`- in which you can specify in a comma separated string
|
||||
the exact modules for LoRA training. Here are some examples of target modules you can provide:
|
||||
- for attention only layers: `--lora_layers="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0"`
|
||||
- to train the same modules as in the fal trainer: `--lora_layers="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0,attn.add_k_proj,attn.add_q_proj,attn.add_v_proj,attn.to_add_out,ff.net.0.proj,ff.net.2,ff_context.net.0.proj,ff_context.net.2"`
|
||||
- to train the same modules as in ostris ai-toolkit / replicate trainer: `--lora_blocks="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0,attn.add_k_proj,attn.add_q_proj,attn.add_v_proj,attn.to_add_out,ff.net.0.proj,ff.net.2,ff_context.net.0.proj,ff_context.net.2,norm1_context.linear, norm1.linear,norm.linear,proj_mlp,proj_out"`
|
||||
> [!NOTE]
|
||||
> `--lora_layers` can also be used to specify which **blocks** to apply LoRA training to. To do so, simply add a block prefix to each layer in the comma seperated string:
|
||||
> `--lora_layers` can also be used to specify which **blocks** to apply LoRA training to. To do so, simply add a block prefix to each layer in the comma separated string:
|
||||
> **single DiT blocks**: to target the ith single transformer block, add the prefix `single_transformer_blocks.i`, e.g. - `single_transformer_blocks.i.attn.to_k`
|
||||
> **MMDiT blocks**: to target the ith MMDiT block, add the prefix `transformer_blocks.i`, e.g. - `transformer_blocks.i.attn.to_k`
|
||||
> [!NOTE]
|
||||
|
||||
@@ -378,7 +378,7 @@ def parse_args(input_args=None):
|
||||
default=None,
|
||||
help="the concept to use to initialize the new inserted tokens when training with "
|
||||
"--train_text_encoder_ti = True. By default, new tokens (<si><si+1>) are initialized with random value. "
|
||||
"Alternatively, you could specify a different word/words whos value will be used as the starting point for the new inserted tokens. "
|
||||
"Alternatively, you could specify a different word/words whose value will be used as the starting point for the new inserted tokens. "
|
||||
"--num_new_tokens_per_abstraction is ignored when initializer_concept is provided",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -662,7 +662,7 @@ def parse_args(input_args=None):
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"The transformer modules to apply LoRA training on. Please specify the layers in a comma seperated. "
|
||||
"The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. "
|
||||
'E.g. - "to_k,to_q,to_v,to_out.0" will result in lora training of attention layers only. For more examples refer to https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/README_flux.md'
|
||||
),
|
||||
)
|
||||
|
||||
@@ -662,7 +662,7 @@ def parse_args(input_args=None):
|
||||
action="store_true",
|
||||
default=False,
|
||||
help=(
|
||||
"Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
|
||||
"Whether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
|
||||
"Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
|
||||
),
|
||||
)
|
||||
|
||||
@@ -773,7 +773,7 @@ def parse_args(input_args=None):
|
||||
action="store_true",
|
||||
default=False,
|
||||
help=(
|
||||
"Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
|
||||
"Whether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
|
||||
"Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
|
||||
),
|
||||
)
|
||||
@@ -1875,7 +1875,7 @@ def main(args):
|
||||
# pack the statically computed variables appropriately here. This is so that we don't
|
||||
# have to pass them to the dataloader.
|
||||
|
||||
# if --train_text_encoder_ti we need add_special_tokens to be True fo textual inversion
|
||||
# if --train_text_encoder_ti we need add_special_tokens to be True for textual inversion
|
||||
add_special_tokens = True if args.train_text_encoder_ti else False
|
||||
|
||||
if not train_dataset.custom_instance_prompts:
|
||||
|
||||
Reference in New Issue
Block a user