mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
clean up
This commit is contained in:
@@ -54,11 +54,11 @@ if is_transformers_available():
|
||||
_import_structure = {}
|
||||
|
||||
if is_torch_available():
|
||||
_import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
|
||||
_import_structure["utils"] = ["AttnProcsLayers"]
|
||||
_import_structure["controlnet"] = ["FromOriginalControlnetMixin"]
|
||||
_import_structure["autoencoder"] = ["FromOriginalVAEMixin"]
|
||||
|
||||
_import_structure["controlnet"] = ["FromOriginalControlNetMixin"]
|
||||
_import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
|
||||
_import_structure["utils"] = ["AttnProcsLayers"]
|
||||
if is_transformers_available():
|
||||
_import_structure["single_file"] = ["FromSingleFileMixin"]
|
||||
_import_structure["lora"] = ["LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin"]
|
||||
@@ -71,7 +71,7 @@ _import_structure["peft"] = ["PeftAdapterMixin"]
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
if is_torch_available():
|
||||
from .autoencoder import FromOriginalVAEMixin
|
||||
from .controlnet import FromOriginalControlnetMixin
|
||||
from .controlnet import FromOriginalControlNetMixin
|
||||
from .unet import UNet2DConditionLoadersMixin
|
||||
from .utils import AttnProcsLayers
|
||||
|
||||
|
||||
@@ -22,14 +22,14 @@ from .single_file_utils import (
|
||||
|
||||
class FromOriginalVAEMixin:
|
||||
"""
|
||||
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
|
||||
Load pretrained AutoencoderKL weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
||||
|
||||
Parameters:
|
||||
@@ -62,32 +62,35 @@ class FromOriginalVAEMixin:
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
||||
allowed by Git.
|
||||
image_size (`int`, *optional*, defaults to 512):
|
||||
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
||||
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
||||
use_safetensors (`bool`, *optional*, defaults to `None`):
|
||||
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
|
||||
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
|
||||
weights. If set to `False`, safetensors weights are not loaded.
|
||||
image_size (`int`, *optional*, defaults to 512):
|
||||
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
||||
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
||||
upcast_attention (`bool`, *optional*, defaults to `None`):
|
||||
Whether the attention computation should always be upcasted.
|
||||
kwargs (remaining dictionary of keyword arguments, *optional*):
|
||||
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
||||
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
||||
method. See example below for more information.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
|
||||
a VAE from SDXL or a Stable Diffusion v2 model or higher.
|
||||
|
||||
</Tip>
|
||||
|
||||
Examples:
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
||||
from diffusers import AutoencoderKL
|
||||
|
||||
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
|
||||
model = ControlNetModel.from_single_file(url)
|
||||
|
||||
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
|
||||
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
|
||||
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
|
||||
model = AutoencoderKL.from_single_file(url)
|
||||
```
|
||||
"""
|
||||
|
||||
original_config_file = kwargs.pop("original_config_file", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
|
||||
@@ -20,7 +20,7 @@ from .single_file_utils import (
|
||||
)
|
||||
|
||||
|
||||
class FromOriginalControlnetMixin:
|
||||
class FromOriginalControlNetMixin:
|
||||
"""
|
||||
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
|
||||
"""
|
||||
|
||||
@@ -507,7 +507,7 @@ def create_controlnet_diffusers_config(original_config, image_size: int):
|
||||
return controlnet_config
|
||||
|
||||
|
||||
def create_vae_diffusers_config(original_config, image_size: int):
|
||||
def create_vae_diffusers_config(original_config, image_size, scaling_factor=0.18125):
|
||||
"""
|
||||
Creates a config for the diffusers based on the config of the LDM model.
|
||||
"""
|
||||
@@ -526,6 +526,7 @@ def create_vae_diffusers_config(original_config, image_size: int):
|
||||
"block_out_channels": tuple(block_out_channels),
|
||||
"latent_channels": vae_params["z_channels"],
|
||||
"layers_per_block": vae_params["num_res_blocks"],
|
||||
"scaling_factor": scaling_factor,
|
||||
}
|
||||
|
||||
return config
|
||||
@@ -1134,17 +1135,14 @@ def create_diffusers_unet_model_from_ldm(
|
||||
|
||||
|
||||
def create_diffusers_vae_model_from_ldm(
|
||||
pipeline_class_name,
|
||||
original_config,
|
||||
checkpoint,
|
||||
image_size=None,
|
||||
pipeline_class_name, original_config, checkpoint, image_size=None, scaling_factor=0.18125
|
||||
):
|
||||
# import here to avoid circular imports
|
||||
from ..models import AutoencoderKL
|
||||
|
||||
image_size = set_image_size(pipeline_class_name, original_config, checkpoint, image_size=image_size)
|
||||
|
||||
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
||||
vae_config = create_vae_diffusers_config(original_config, image_size=image_size, scaling_factor=scaling_factor)
|
||||
diffusers_format_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
||||
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..loaders import FromOriginalControlnetMixin
|
||||
from ..loaders import FromOriginalControlNetMixin
|
||||
from ..utils import BaseOutput, logging
|
||||
from .attention_processor import (
|
||||
ADDED_KV_ATTENTION_PROCESSORS,
|
||||
@@ -102,7 +102,7 @@ class ControlNetConditioningEmbedding(nn.Module):
|
||||
return embedding
|
||||
|
||||
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
"""
|
||||
A ControlNet model.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user