1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

add tests

This commit is contained in:
Aryan
2025-05-29 04:34:31 +02:00
parent 01e521a8ce
commit 36159dd2a6
2 changed files with 187 additions and 6 deletions

View File

@@ -740,6 +740,7 @@ class FluxKontextPipeline(
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
max_area: int = 1024**2,
_auto_resize: bool = True,
):
r"""
Function invoked when calling the pipeline for generation.
@@ -937,13 +938,16 @@ class FluxKontextPipeline(
# 3. Preprocess image
if not torch.is_tensor(image) or image.size(1) == self.latent_channels:
image_width, image_height = self.image_processor.get_default_height_width(image)
if isinstance(image, list):
image_width, image_height = self.image_processor.get_default_height_width(image[0])
else:
image_width, image_height = self.image_processor.get_default_height_width(image)
aspect_ratio = image_width / image_height
# Kontext is trained on specific resolutions, using one of them is recommended
_, image_width, image_height = min(
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
)
if _auto_resize:
# Kontext is trained on specific resolutions, using one of them is recommended
_, image_width, image_height = min(
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
)
image_width = image_width // multiple_of * multiple_of
image_height = image_height // multiple_of * multiple_of
image = self.image_processor.resize(image, image_height, image_width)

View File

@@ -0,0 +1,177 @@
import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
FasterCacheConfig,
FlowMatchEulerDiscreteScheduler,
FluxKontextPipeline,
FluxTransformer2DModel,
)
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import (
FasterCacheTesterMixin,
FluxIPAdapterTesterMixin,
PipelineTesterMixin,
PyramidAttentionBroadcastTesterMixin,
)
class FluxKontextPipelineFastTests(
unittest.TestCase,
PipelineTesterMixin,
FluxIPAdapterTesterMixin,
PyramidAttentionBroadcastTesterMixin,
FasterCacheTesterMixin,
):
pipeline_class = FluxKontextPipeline
params = frozenset(
["image", "prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]
)
batch_params = frozenset(["image", "prompt"])
# there is no xformers processor for Flux
test_xformers_attention = False
test_layerwise_casting = True
test_group_offloading = True
faster_cache_config = FasterCacheConfig(
spatial_attention_block_skip_range=2,
spatial_attention_timestep_skip_range=(-1, 901),
unconditional_batch_skip_range=2,
attention_weight_callback=lambda _: 0.5,
is_guidance_distilled=True,
)
def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
torch.manual_seed(0)
transformer = FluxTransformer2DModel(
patch_size=1,
in_channels=4,
num_layers=num_layers,
num_single_layers=num_single_layers,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=32,
pooled_projection_dim=32,
axes_dims_rope=[4, 4, 8],
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=1,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"transformer": transformer,
"vae": vae,
"image_encoder": None,
"feature_extractor": None,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
image = PIL.Image.new("RGB", (32, 32), 0)
inputs = {
"image": image,
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 8,
"width": 8,
"max_area": 8 * 8,
"max_sequence_length": 48,
"output_type": "np",
"_auto_resize": False,
}
return inputs
def test_flux_different_prompts(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_same_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "a different prompt"
output_different_prompts = pipe(**inputs).images[0]
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
# Outputs should be different here
# For some reasons, they don't show large differences
assert max_diff > 1e-6
def test_flux_image_output_shape(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
height_width_pairs = [(32, 32), (72, 57)]
for height, width in height_width_pairs:
expected_height = height - height % (pipe.vae_scale_factor * 2)
expected_width = width - width % (pipe.vae_scale_factor * 2)
inputs.update({"height": height, "width": width, "max_area": height * width})
image = pipe(**inputs).images[0]
output_height, output_width, _ = image.shape
assert (output_height, output_width) == (expected_height, expected_width)
def test_flux_true_cfg(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
inputs.pop("generator")
no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
inputs["negative_prompt"] = "bad quality"
inputs["true_cfg_scale"] = 2.0
true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
assert not np.allclose(no_true_cfg_out, true_cfg_out)