1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Modularize train_text_to_image_lora_sdxl inferencing during and after training in example (#8335)

* Modularized the train_lora_sdxl file

* Modularized the train_lora_sdxl file

* Modularized the train_lora_sdxl file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
This commit is contained in:
satani99
2024-05-31 04:52:22 +05:30
committed by GitHub
parent 3511a9623f
commit 352d96eb82

View File

@@ -64,6 +64,9 @@ from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_ava
from diffusers.utils.torch_utils import is_compiled_module
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.29.0.dev0")
@@ -119,6 +122,47 @@ Special VAE used for training: {vae_path}.
model_card.save(os.path.join(repo_folder, "README.md"))
def log_validation(
pipeline,
args,
accelerator,
epoch,
is_final_validation=False,
):
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
pipeline_args = {"prompt": args.validation_prompt}
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)]
for tracker in accelerator.trackers:
phase_name = "test" if is_final_validation else "validation"
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
phase_name: [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
]
}
)
return images
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
@@ -523,11 +567,6 @@ def main(args):
kwargs_handlers=[kwargs],
)
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
import wandb
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
@@ -1196,10 +1235,6 @@ def main(args):
if accelerator.is_main_process:
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
# create pipeline
pipeline = StableDiffusionXLPipeline.from_pretrained(
args.pretrained_model_name_or_path,
@@ -1212,36 +1247,7 @@ def main(args):
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
pipeline_args = {"prompt": args.validation_prompt}
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
images = [
pipeline(**pipeline_args, generator=generator).images[0]
for _ in range(args.num_validation_images)
]
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"validation": [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)
images = log_validation(pipeline, args, accelerator, epoch)
del pipeline
torch.cuda.empty_cache()
@@ -1288,33 +1294,13 @@ def main(args):
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
# load attention processors
pipeline.load_lora_weights(args.output_dir)
# run inference
images = []
if args.validation_prompt and args.num_validation_images > 0:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
images = [
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
for _ in range(args.num_validation_images)
]
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"test": [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)
images = log_validation(pipeline, args, accelerator, epoch, is_final_validation=True)
if args.push_to_hub:
save_model_card(