mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add PAG support to StableDiffusionControlNetPAGInpaintPipeline (#8875)
* Add pag to controlnet inpainting pipeline --------- Co-authored-by: YiYi Xu <yixu310@gmail.com>
This commit is contained in:
@@ -55,6 +55,9 @@ Since RegEx is supported as a way for matching layer identifiers, it is crucial
|
||||
|
||||
## StableDiffusionControlNetPAGPipeline
|
||||
[[autodoc]] StableDiffusionControlNetPAGPipeline
|
||||
|
||||
## StableDiffusionControlNetPAGInpaintPipeline
|
||||
[[autodoc]] StableDiffusionControlNetPAGInpaintPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
|
||||
@@ -328,6 +328,7 @@ else:
|
||||
"StableDiffusionAttendAndExcitePipeline",
|
||||
"StableDiffusionControlNetImg2ImgPipeline",
|
||||
"StableDiffusionControlNetInpaintPipeline",
|
||||
"StableDiffusionControlNetPAGInpaintPipeline",
|
||||
"StableDiffusionControlNetPAGPipeline",
|
||||
"StableDiffusionControlNetPipeline",
|
||||
"StableDiffusionControlNetXSPipeline",
|
||||
@@ -778,6 +779,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
StableDiffusionAttendAndExcitePipeline,
|
||||
StableDiffusionControlNetImg2ImgPipeline,
|
||||
StableDiffusionControlNetInpaintPipeline,
|
||||
StableDiffusionControlNetPAGInpaintPipeline,
|
||||
StableDiffusionControlNetPAGPipeline,
|
||||
StableDiffusionControlNetPipeline,
|
||||
StableDiffusionControlNetXSPipeline,
|
||||
|
||||
@@ -158,6 +158,7 @@ else:
|
||||
)
|
||||
_import_structure["pag"].extend(
|
||||
[
|
||||
"StableDiffusionControlNetPAGInpaintPipeline",
|
||||
"AnimateDiffPAGPipeline",
|
||||
"KolorsPAGPipeline",
|
||||
"HunyuanDiTPAGPipeline",
|
||||
@@ -566,6 +567,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
KolorsPAGPipeline,
|
||||
PixArtSigmaPAGPipeline,
|
||||
StableDiffusion3PAGPipeline,
|
||||
StableDiffusionControlNetPAGInpaintPipeline,
|
||||
StableDiffusionControlNetPAGPipeline,
|
||||
StableDiffusionPAGPipeline,
|
||||
StableDiffusionXLControlNetPAGImg2ImgPipeline,
|
||||
|
||||
@@ -61,6 +61,7 @@ from .pag import (
|
||||
HunyuanDiTPAGPipeline,
|
||||
PixArtSigmaPAGPipeline,
|
||||
StableDiffusion3PAGPipeline,
|
||||
StableDiffusionControlNetPAGInpaintPipeline,
|
||||
StableDiffusionControlNetPAGPipeline,
|
||||
StableDiffusionPAGPipeline,
|
||||
StableDiffusionXLControlNetPAGImg2ImgPipeline,
|
||||
@@ -148,6 +149,7 @@ AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
|
||||
("kandinsky", KandinskyInpaintCombinedPipeline),
|
||||
("kandinsky22", KandinskyV22InpaintCombinedPipeline),
|
||||
("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
|
||||
("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGInpaintPipeline),
|
||||
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
|
||||
("stable-diffusion-xl-pag", StableDiffusionXLPAGInpaintPipeline),
|
||||
("flux", FluxInpaintPipeline),
|
||||
|
||||
@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_pag_controlnet_sd"] = ["StableDiffusionControlNetPAGPipeline"]
|
||||
_import_structure["pipeline_pag_controlnet_sd_inpaint"] = ["StableDiffusionControlNetPAGInpaintPipeline"]
|
||||
_import_structure["pipeline_pag_controlnet_sd_xl"] = ["StableDiffusionXLControlNetPAGPipeline"]
|
||||
_import_structure["pipeline_pag_controlnet_sd_xl_img2img"] = ["StableDiffusionXLControlNetPAGImg2ImgPipeline"]
|
||||
_import_structure["pipeline_pag_hunyuandit"] = ["HunyuanDiTPAGPipeline"]
|
||||
@@ -44,6 +45,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_pag_controlnet_sd import StableDiffusionControlNetPAGPipeline
|
||||
from .pipeline_pag_controlnet_sd_inpaint import StableDiffusionControlNetPAGInpaintPipeline
|
||||
from .pipeline_pag_controlnet_sd_xl import StableDiffusionXLControlNetPAGPipeline
|
||||
from .pipeline_pag_controlnet_sd_xl_img2img import StableDiffusionXLControlNetPAGImg2ImgPipeline
|
||||
from .pipeline_pag_hunyuandit import HunyuanDiTPAGPipeline
|
||||
|
||||
1544
src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py
Normal file
1544
src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1347,7 +1347,7 @@ class StableDiffusionXLControlNetPAGPipeline(
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6.5 Optionally get Guidance Scale Embedding
|
||||
# 6.1 Optionally get Guidance Scale Embedding
|
||||
timestep_cond = None
|
||||
if self.unet.config.time_cond_proj_dim is not None:
|
||||
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
||||
|
||||
@@ -1352,6 +1352,21 @@ class StableDiffusionControlNetInpaintPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionControlNetPAGInpaintPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableDiffusionControlNetPAGPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
245
tests/pipelines/pag/test_pag_controlnet_sd_inpaint.py
Normal file
245
tests/pipelines/pag/test_pag_controlnet_sd_inpaint.py
Normal file
@@ -0,0 +1,245 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This model implementation is heavily based on:
|
||||
|
||||
import inspect
|
||||
import random
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
ControlNetModel,
|
||||
DDIMScheduler,
|
||||
StableDiffusionControlNetInpaintPipeline,
|
||||
StableDiffusionControlNetPAGInpaintPipeline,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ..pipeline_params import (
|
||||
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
|
||||
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
|
||||
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
||||
)
|
||||
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class StableDiffusionControlNetPAGInpaintPipelineFastTests(
|
||||
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
|
||||
):
|
||||
pipeline_class = StableDiffusionControlNetPAGInpaintPipeline
|
||||
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
||||
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
||||
image_params = frozenset({"control_image"}) # skip `image` and `mask` for now, only test for control_image
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
|
||||
def get_dummy_components(self):
|
||||
# Copied from tests.pipelines.controlnet.test_controlnet_inpaint.ControlNetInpaintPipelineFastTests.get_dummy_components
|
||||
torch.manual_seed(0)
|
||||
unet = UNet2DConditionModel(
|
||||
block_out_channels=(32, 64),
|
||||
layers_per_block=2,
|
||||
sample_size=32,
|
||||
in_channels=9,
|
||||
out_channels=4,
|
||||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
||||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
||||
cross_attention_dim=32,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
controlnet = ControlNetModel(
|
||||
block_out_channels=(32, 64),
|
||||
layers_per_block=2,
|
||||
in_channels=4,
|
||||
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
||||
cross_attention_dim=32,
|
||||
conditioning_embedding_out_channels=(16, 32),
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler(
|
||||
beta_start=0.00085,
|
||||
beta_end=0.012,
|
||||
beta_schedule="scaled_linear",
|
||||
clip_sample=False,
|
||||
set_alpha_to_one=False,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
block_out_channels=[32, 64],
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
latent_channels=4,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
text_encoder_config = CLIPTextConfig(
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
hidden_size=32,
|
||||
intermediate_size=37,
|
||||
layer_norm_eps=1e-05,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=5,
|
||||
pad_token_id=1,
|
||||
vocab_size=1000,
|
||||
)
|
||||
text_encoder = CLIPTextModel(text_encoder_config)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
components = {
|
||||
"unet": unet,
|
||||
"controlnet": controlnet,
|
||||
"scheduler": scheduler,
|
||||
"vae": vae,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"safety_checker": None,
|
||||
"feature_extractor": None,
|
||||
"image_encoder": None,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
|
||||
controlnet_embedder_scale_factor = 2
|
||||
control_image = randn_tensor(
|
||||
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
||||
generator=generator,
|
||||
device=torch.device(device),
|
||||
)
|
||||
init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
||||
init_image = init_image.cpu().permute(0, 2, 3, 1)[0]
|
||||
|
||||
image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64))
|
||||
mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64))
|
||||
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"pag_scale": 3.0,
|
||||
"output_type": "np",
|
||||
"image": image,
|
||||
"mask_image": mask_image,
|
||||
"control_image": control_image,
|
||||
}
|
||||
|
||||
return inputs
|
||||
|
||||
def test_pag_disable_enable(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
|
||||
# base pipeline (expect same output when pag is disabled)
|
||||
pipe_sd = StableDiffusionControlNetInpaintPipeline(**components)
|
||||
pipe_sd = pipe_sd.to(device)
|
||||
pipe_sd.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
del inputs["pag_scale"]
|
||||
assert (
|
||||
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
|
||||
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__calss__.__name__}."
|
||||
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
|
||||
|
||||
# pag disabled with pag_scale=0.0
|
||||
pipe_pag = self.pipeline_class(**components)
|
||||
pipe_pag = pipe_pag.to(device)
|
||||
pipe_pag.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
inputs["pag_scale"] = 0.0
|
||||
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
|
||||
|
||||
# pag enabled
|
||||
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
||||
pipe_pag = pipe_pag.to(device)
|
||||
pipe_pag.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
|
||||
|
||||
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
|
||||
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3
|
||||
|
||||
def test_pag_cfg(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
||||
pipe_pag = pipe_pag.to(device)
|
||||
pipe_pag.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe_pag(**inputs).images
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (
|
||||
1,
|
||||
64,
|
||||
64,
|
||||
3,
|
||||
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
|
||||
expected_slice = np.array(
|
||||
[0.7488756, 0.61194265, 0.53382546, 0.5993959, 0.6193306, 0.56880975, 0.41277143, 0.5050145, 0.49376273]
|
||||
)
|
||||
|
||||
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
||||
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"
|
||||
|
||||
def test_pag_uncond(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
||||
pipe_pag = pipe_pag.to(device)
|
||||
pipe_pag.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
inputs["guidance_scale"] = 0.0
|
||||
image = pipe_pag(**inputs).images
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == (
|
||||
1,
|
||||
64,
|
||||
64,
|
||||
3,
|
||||
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
|
||||
expected_slice = np.array(
|
||||
[0.7410303, 0.5989337, 0.530866, 0.60571927, 0.6162597, 0.5719856, 0.4187478, 0.5101238, 0.4978468]
|
||||
)
|
||||
|
||||
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
||||
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"
|
||||
Reference in New Issue
Block a user