1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

add tests for AutoencoderKL

This commit is contained in:
patil-suraj
2022-06-29 13:52:04 +02:00
parent 976173a4bf
commit 333a8da678
2 changed files with 76 additions and 3 deletions

View File

@@ -626,11 +626,11 @@ class AutoencoderKL(ModelMixin, ConfigMixin):
dec = self.decoder(z)
return dec
def forward(self, input, sample_posterior=True):
posterior = self.encode(input)
def forward(self, x, sample_posterior=False):
posterior = self.encode(x)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
dec = self.decode(z)
return dec, posterior
return dec

View File

@@ -46,6 +46,7 @@ from diffusers import (
UNetLDMModel,
UNetModel,
VQModel,
AutoencoderKL,
)
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import DiffusionPipeline
@@ -883,6 +884,78 @@ class VQModelTests(ModelTesterMixin, unittest.TestCase):
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
model_class = AutoencoderKL
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"x": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"ch": 64,
"ch_mult": (1,),
"embed_dim": 4,
"in_channels": 3,
"num_res_blocks": 1,
"out_ch": 3,
"resolution": 32,
"z_channels": 4,
"attn_resolutions": []
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
def test_from_pretrained_hub(self):
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
model.eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
with torch.no_grad():
output = model(image, sample_posterior=True)
output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662,
0.1750])
# fmt: on
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
class PipelineTesterMixin(unittest.TestCase):
def test_from_pretrained_save_pretrained(self):
# 1. Load models