1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[SDXL] Add LoRA to all pipelines (#4896)

* [SDXL] Add LoRA to all pipelines

* fix all

* fix all

* fix all

* fix more docs

* make style
This commit is contained in:
Patrick von Platen
2023-09-13 11:05:20 +02:00
committed by GitHub
parent 8009272f48
commit 324aef6d14
10 changed files with 203 additions and 573 deletions

View File

@@ -28,6 +28,10 @@ Adapters (textual inversion, LoRA, hypernetworks) allow you to modify a diffusio
[[autodoc]] loaders.TextualInversionLoaderMixin
## StableDiffusionXLLoraLoaderMixin
[[autodoc]] loaders.StableDiffusionXLLoraLoaderMixin
## LoraLoaderMixin
[[autodoc]] loaders.LoraLoaderMixin

View File

@@ -33,6 +33,7 @@ from .utils import (
_get_model_file,
deprecate,
is_accelerate_available,
is_accelerate_version,
is_omegaconf_available,
is_transformers_available,
logging,
@@ -2556,3 +2557,151 @@ class FromOriginalControlnetMixin:
controlnet.to(torch_dtype=torch_dtype)
return controlnet
class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
"""This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""
# Overrride to properly handle the loading and unloading of the additional text encoder.
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
`self.unet`.
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
into `self.text_encoder`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
kwargs (`dict`, *optional*):
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
"""
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)

View File

@@ -13,7 +13,6 @@
# limitations under the License.
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
@@ -25,7 +24,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
@@ -36,8 +35,6 @@ from ...models.attention_processor import (
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
@@ -128,7 +125,9 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
return noise_cfg
class StableDiffusionXLControlNetInpaintPipeline(DiffusionPipeline, LoraLoaderMixin, FromSingleFileMixin):
class StableDiffusionXLControlNetInpaintPipeline(
DiffusionPipeline, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL.
@@ -136,11 +135,11 @@ class StableDiffusionXLControlNetInpaintPipeline(DiffusionPipeline, LoraLoaderMi
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`]
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
as well as the following saving methods:
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
@@ -308,7 +307,7 @@ class StableDiffusionXLControlNetInpaintPipeline(DiffusionPipeline, LoraLoaderMi
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
@@ -1510,108 +1509,3 @@ class StableDiffusionXLControlNetInpaintPipeline(DiffusionPipeline, LoraLoaderMi
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
# Overrride to properly handle the loading and unloading of the additional text encoder.
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)

View File

@@ -14,7 +14,6 @@
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
@@ -26,7 +25,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from diffusers.utils.import_utils import is_invisible_watermark_available
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
@@ -37,8 +36,6 @@ from ...models.attention_processor import (
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
replace_example_docstring,
)
@@ -103,7 +100,7 @@ EXAMPLE_DOC_STRING = """
class StableDiffusionXLControlNetPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
@@ -113,7 +110,7 @@ class StableDiffusionXLControlNetPipeline(
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
Args:
@@ -283,7 +280,7 @@ class StableDiffusionXLControlNetPipeline(
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
@@ -1176,108 +1173,3 @@ class StableDiffusionXLControlNetPipeline(
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
# Overrride to properly handle the loading and unloading of the additional text encoder.
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)

View File

@@ -25,7 +25,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from diffusers.utils.import_utils import is_invisible_watermark_available
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
@@ -128,7 +128,9 @@ EXAMPLE_DOC_STRING = """
"""
class StableDiffusionXLControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
class StableDiffusionXLControlNetImg2ImgPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin
):
r"""
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
@@ -137,7 +139,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(DiffusionPipeline, TextualInver
In addition the pipeline inherits the following loading methods:
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
@@ -316,7 +318,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(DiffusionPipeline, TextualInver
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale

View File

@@ -13,7 +13,6 @@
# limitations under the License.
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
@@ -22,7 +21,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from ...image_processor import VaeImageProcessor
from ...loaders import (
FromSingleFileMixin,
LoraLoaderMixin,
StableDiffusionXLLoraLoaderMixin,
TextualInversionLoaderMixin,
)
from ...models import AutoencoderKL, UNet2DConditionModel
@@ -35,8 +34,6 @@ from ...models.attention_processor import (
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
@@ -84,7 +81,9 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
return noise_cfg
class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin):
class StableDiffusionXLPipeline(
DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL.
@@ -92,11 +91,11 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`]
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
as well as the following saving methods:
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
@@ -257,7 +256,7 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
@@ -886,105 +885,3 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoad
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
# Overrride to properly handle the loading and unloading of the additional text encoder.
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)

View File

@@ -13,7 +13,6 @@
# limitations under the License.
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import PIL.Image
@@ -21,7 +20,7 @@ import torch
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
@@ -32,8 +31,6 @@ from ...models.attention_processor import (
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
@@ -85,7 +82,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
class StableDiffusionXLImg2ImgPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
DiffusionPipeline, TextualInversionLoaderMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL.
@@ -94,11 +91,11 @@ class StableDiffusionXLImg2ImgPipeline(
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`]
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
as well as the following saving methods:
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
@@ -266,7 +263,7 @@ class StableDiffusionXLImg2ImgPipeline(
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
@@ -1036,108 +1033,3 @@ class StableDiffusionXLImg2ImgPipeline(
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
# Overrride to properly handle the loading and unloading of the additional text encoder.
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)

View File

@@ -13,7 +13,6 @@
# limitations under the License.
import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
@@ -22,7 +21,7 @@ import torch
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
@@ -34,8 +33,6 @@ from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
logging,
replace_example_docstring,
@@ -231,7 +228,7 @@ def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool
class StableDiffusionXLInpaintPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL.
@@ -240,11 +237,11 @@ class StableDiffusionXLInpaintPipeline(
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`]
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
as well as the following saving methods:
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
@@ -415,7 +412,7 @@ class StableDiffusionXLInpaintPipeline(
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
@@ -1355,108 +1352,3 @@ class StableDiffusionXLInpaintPipeline(
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
# Overrride to properly handle the loading and unloading of the additional text encoder.
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
@classmethod
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights
def save_lora_weights(
self,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
state_dict = {}
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers and text_encoder_2_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
self.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)

View File

@@ -20,7 +20,7 @@ import torch
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
@@ -93,7 +93,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
class StableDiffusionXLInstructPix2PixPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
DiffusionPipeline, TextualInversionLoaderMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin
):
r"""
Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.
@@ -102,10 +102,10 @@ class StableDiffusionXLInstructPix2PixPipeline(
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`]
as well as the following saving methods:
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`]
Args:
vae ([`AutoencoderKL`]):
@@ -268,7 +268,7 @@ class StableDiffusionXLInstructPix2PixPipeline(
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
@@ -710,6 +710,14 @@ class StableDiffusionXLInstructPix2PixPipeline(
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
aesthetic_score (`float`, *optional*, defaults to 6.0):
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
simulate an aesthetic score of the generated image by influencing the negative text condition.
Examples:

View File

@@ -23,7 +23,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from ...image_processor import VaeImageProcessor
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, MultiAdapter, T2IAdapter, UNet2DConditionModel
from ...models.attention_processor import (
AttnProcessor2_0,
@@ -122,7 +122,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
class StableDiffusionXLAdapterPipeline(
DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter
@@ -280,7 +280,7 @@ class StableDiffusionXLAdapterPipeline(
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale