mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Merge remote-tracking branch 'origin/main'
This commit is contained in:
156
_
156
_
@@ -1,156 +0,0 @@
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
import tqdm
|
||||
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
|
||||
|
||||
class PNDM(DiffusionPipeline):
|
||||
def __init__(self, unet, noise_scheduler):
|
||||
super().__init__()
|
||||
noise_scheduler = noise_scheduler.set_format("pt")
|
||||
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
|
||||
|
||||
def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50):
|
||||
# eta corresponds to η in paper and should be between [0, 1]
|
||||
if torch_device is None:
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
num_trained_timesteps = self.noise_scheduler.timesteps
|
||||
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
|
||||
|
||||
self.unet.to(torch_device)
|
||||
|
||||
# Sample gaussian noise to begin loop
|
||||
image = torch.randn(
|
||||
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
|
||||
generator=generator,
|
||||
)
|
||||
image = image.to(torch_device)
|
||||
|
||||
seq = list(inference_step_times)
|
||||
seq_next = [-1] + list(seq[:-1])
|
||||
model = self.unet
|
||||
|
||||
warmup_steps = [len(seq) - (i // 4 + 1) for i in range(3 * 4)]
|
||||
|
||||
ets = []
|
||||
prev_image = image
|
||||
for i, step_idx in enumerate(warmup_steps):
|
||||
i = seq[step_idx]
|
||||
j = seq_next[step_idx]
|
||||
|
||||
t = (torch.ones(image.shape[0]) * i)
|
||||
t_next = (torch.ones(image.shape[0]) * j)
|
||||
|
||||
residual = model(image.to("cuda"), t.to("cuda"))
|
||||
residual = residual.to("cpu")
|
||||
|
||||
image = image.to("cpu")
|
||||
image = self.noise_scheduler.transfer(prev_image.to("cpu"), t_list[0], t_list[1], residual)
|
||||
|
||||
if i % 4 == 0:
|
||||
ets.append(residual)
|
||||
prev_image = image
|
||||
|
||||
for
|
||||
|
||||
ets = []
|
||||
step_idx = len(seq) - 1
|
||||
while step_idx >= 0:
|
||||
i = seq[step_idx]
|
||||
j = seq_next[step_idx]
|
||||
|
||||
t = (torch.ones(image.shape[0]) * i)
|
||||
t_next = (torch.ones(image.shape[0]) * j)
|
||||
|
||||
residual = model(image.to("cuda"), t.to("cuda"))
|
||||
residual = residual.to("cpu")
|
||||
|
||||
t_list = [t, (t+t_next)/2, t_next]
|
||||
|
||||
ets.append(residual)
|
||||
if len(ets) <= 3:
|
||||
image = image.to("cpu")
|
||||
x_2 = self.noise_scheduler.transfer(image.to("cpu"), t_list[0], t_list[1], residual)
|
||||
|
||||
e_2 = model(x_2.to("cuda"), t_list[1].to("cuda")).to("cpu")
|
||||
x_3 = self.noise_scheduler.transfer(image, t_list[0], t_list[1], e_2)
|
||||
e_3 = model(x_3.to("cuda"), t_list[1].to("cuda")).to("cpu")
|
||||
x_4 = self.noise_scheduler.transfer(image, t_list[0], t_list[2], e_3)
|
||||
e_4 = model(x_4.to("cuda"), t_list[2].to("cuda")).to("cpu")
|
||||
residual = (1 / 6) * (residual + 2 * e_2 + 2 * e_3 + e_4)
|
||||
else:
|
||||
residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])
|
||||
|
||||
img_next = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual)
|
||||
image = img_next
|
||||
|
||||
step_idx = step_idx - 1
|
||||
|
||||
# if len(prev_noises) in [1, 2]:
|
||||
# t = (t + t_next) / 2
|
||||
# elif len(prev_noises) == 3:
|
||||
# t = t_next / 2
|
||||
|
||||
# if len(prev_noises) == 0:
|
||||
# ets.append(residual)
|
||||
#
|
||||
# if len(ets) > 3:
|
||||
# residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4])
|
||||
# step_idx = step_idx - 1
|
||||
# elif len(ets) <= 3 and len(prev_noises) == 3:
|
||||
# residual = (1 / 6) * (prev_noises[-3] + 2 * prev_noises[-2] + 2 * prev_noises[-1] + residual)
|
||||
# prev_noises = []
|
||||
# step_idx = step_idx - 1
|
||||
# elif len(ets) <= 3 and len(prev_noises) < 3:
|
||||
# prev_noises.append(residual)
|
||||
# if len(prev_noises) < 2:
|
||||
# t_next = (t + t_next) / 2
|
||||
#
|
||||
# image = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual)
|
||||
|
||||
return image
|
||||
|
||||
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
||||
# Ideally, read DDIM paper in-detail understanding
|
||||
|
||||
# Notation (<variable name> -> <name in paper>
|
||||
# - pred_noise_t -> e_theta(x_t, t)
|
||||
# - pred_original_image -> f_theta(x_t, t) or x_0
|
||||
# - std_dev_t -> sigma_t
|
||||
# - eta -> η
|
||||
# - pred_image_direction -> "direction pointingc to x_t"
|
||||
# - pred_prev_image -> "x_t-1"
|
||||
# for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
|
||||
# 1. predict noise residual
|
||||
# with torch.no_grad():
|
||||
# residual = self.unet(image, inference_step_times[t])
|
||||
#
|
||||
# 2. predict previous mean of image x_t-1
|
||||
# pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)
|
||||
#
|
||||
# 3. optionally sample variance
|
||||
# variance = 0
|
||||
# if eta > 0:
|
||||
# noise = torch.randn(image.shape, generator=generator).to(image.device)
|
||||
# variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
|
||||
#
|
||||
# 4. set current image to prev_image: x_t -> x_t-1
|
||||
# image = pred_prev_image + variance
|
||||
27
run_pndm.py
27
run_pndm.py
@@ -1,27 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
from diffusers import PNDM, UNetModel, PNDMScheduler
|
||||
import PIL.Image
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
model_id = "fusing/ddim-celeba-hq"
|
||||
|
||||
model = UNetModel.from_pretrained(model_id)
|
||||
scheduler = PNDMScheduler()
|
||||
|
||||
# load model and scheduler
|
||||
ddpm = PNDM(unet=model, noise_scheduler=scheduler)
|
||||
|
||||
# run pipeline in inference (sample random noise and denoise)
|
||||
image = ddpm()
|
||||
|
||||
# process image to PIL
|
||||
image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
image_processed = (image_processed + 1.0) / 2
|
||||
image_processed = torch.clamp(image_processed, 0.0, 1.0)
|
||||
image_processed = image_processed * 255
|
||||
image_processed = image_processed.numpy().astype(np.uint8)
|
||||
image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
|
||||
# save image
|
||||
image_pil.save("/home/patrick/images/test.png")
|
||||
@@ -55,11 +55,20 @@ class DiffusionPipeline(ConfigMixin):
|
||||
config_name = "model_index.json"
|
||||
|
||||
def register_modules(self, **kwargs):
|
||||
# import it here to avoid circular import
|
||||
from diffusers import pipelines
|
||||
|
||||
for name, module in kwargs.items():
|
||||
# check if the module is a pipeline module
|
||||
is_pipeline_module = hasattr(pipelines, module.__module__.split(".")[-1])
|
||||
|
||||
# retrive library
|
||||
library = module.__module__.split(".")[0]
|
||||
# if library is not in LOADABLE_CLASSES, then it is a custom module
|
||||
if library not in LOADABLE_CLASSES:
|
||||
|
||||
# if library is not in LOADABLE_CLASSES, then it is a custom module.
|
||||
# Or if it's a pipeline module, then the module is inside the pipeline
|
||||
# so we set the library to module name.
|
||||
if library not in LOADABLE_CLASSES or is_pipeline_module:
|
||||
library = module.__module__.split(".")[-1]
|
||||
|
||||
# retrive class_name
|
||||
@@ -151,12 +160,22 @@ class DiffusionPipeline(ConfigMixin):
|
||||
init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
|
||||
|
||||
init_kwargs = {}
|
||||
|
||||
|
||||
# import it here to avoid circular import
|
||||
from diffusers import pipelines
|
||||
|
||||
# 4. Load each module in the pipeline
|
||||
for name, (library_name, class_name) in init_dict.items():
|
||||
# if the model is not in diffusers or transformers, we need to load it from the hub
|
||||
# assumes that it's a subclass of ModelMixin
|
||||
if library_name == module_candidate_name:
|
||||
is_pipeline_module = hasattr(pipelines, library_name)
|
||||
# if the model is in a pipeline module, then we load it from the pipeline
|
||||
if is_pipeline_module:
|
||||
pipeline_module = getattr(pipelines, library_name)
|
||||
class_obj = getattr(pipeline_module, class_name)
|
||||
importable_classes = ALL_IMPORTABLE_CLASSES
|
||||
class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
|
||||
elif library_name == module_candidate_name:
|
||||
# if the model is not in diffusers or transformers, we need to load it from the hub
|
||||
# assumes that it's a subclass of ModelMixin
|
||||
class_obj = get_class_from_dynamic_module(cached_folder, module_candidate, class_name, cached_folder)
|
||||
# since it's not from a library, we need to check class candidates for all importable classes
|
||||
importable_classes = ALL_IMPORTABLE_CLASSES
|
||||
|
||||
@@ -28,7 +28,8 @@ class PNDM(DiffusionPipeline):
|
||||
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
|
||||
|
||||
def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50):
|
||||
# eta corresponds to η in paper and should be between [0, 1]
|
||||
# For more information on the sampling method you can take a look at Algorithm 2 of
|
||||
# the official paper: https://arxiv.org/pdf/2202.09778.pdf
|
||||
if torch_device is None:
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
@@ -42,21 +43,17 @@ class PNDM(DiffusionPipeline):
|
||||
image = image.to(torch_device)
|
||||
|
||||
warmup_time_steps = self.noise_scheduler.get_warmup_time_steps(num_inference_steps)
|
||||
prev_image = image
|
||||
for t in tqdm.tqdm(range(len(warmup_time_steps))):
|
||||
t_orig = warmup_time_steps[t]
|
||||
residual = self.unet(image, t_orig)
|
||||
|
||||
if t % 4 == 0:
|
||||
prev_image = image
|
||||
|
||||
image = self.noise_scheduler.step_warm_up(residual, prev_image, t, num_inference_steps)
|
||||
image = self.noise_scheduler.step_prk(residual, image, t, num_inference_steps)
|
||||
|
||||
timesteps = self.noise_scheduler.get_time_steps(num_inference_steps)
|
||||
for t in tqdm.tqdm(range(len(timesteps))):
|
||||
t_orig = timesteps[t]
|
||||
residual = self.unet(image, t_orig)
|
||||
|
||||
image = self.noise_scheduler.step(residual, image, t, num_inference_steps)
|
||||
image = self.noise_scheduler.step_plms(residual, image, t, num_inference_steps)
|
||||
|
||||
return image
|
||||
|
||||
@@ -55,11 +55,14 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
self.set_format(tensor_format=tensor_format)
|
||||
|
||||
# for now we only support F-PNDM, i.e. the runge-kutta method
|
||||
# For now we only support F-PNDM, i.e. the runge-kutta method
|
||||
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
|
||||
# mainly at equations (12) and (13) and the Algorithm 2.
|
||||
self.pndm_order = 4
|
||||
|
||||
# running values
|
||||
self.cur_residual = 0
|
||||
self.cur_image = None
|
||||
self.ets = []
|
||||
self.warmup_time_steps = {}
|
||||
self.time_steps = {}
|
||||
@@ -95,7 +98,8 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
return self.time_steps[num_inference_steps]
|
||||
|
||||
def step_warm_up(self, residual, image, t, num_inference_steps):
|
||||
def step_prk(self, residual, image, t, num_inference_steps):
|
||||
# TODO(Patrick) - need to rethink whether the "warmup" way is the correct API design here
|
||||
warmup_time_steps = self.get_warmup_time_steps(num_inference_steps)
|
||||
|
||||
t_prev = warmup_time_steps[t // 4 * 4]
|
||||
@@ -104,6 +108,7 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
||||
if t % 4 == 0:
|
||||
self.cur_residual += 1 / 6 * residual
|
||||
self.ets.append(residual)
|
||||
self.cur_image = image
|
||||
elif (t - 1) % 4 == 0:
|
||||
self.cur_residual += 1 / 3 * residual
|
||||
elif (t - 2) % 4 == 0:
|
||||
@@ -112,9 +117,9 @@ class PNDMScheduler(SchedulerMixin, ConfigMixin):
|
||||
residual = self.cur_residual + 1 / 6 * residual
|
||||
self.cur_residual = 0
|
||||
|
||||
return self.transfer(image, t_prev, t_next, residual)
|
||||
return self.transfer(self.cur_image, t_prev, t_next, residual)
|
||||
|
||||
def step(self, residual, image, t, num_inference_steps):
|
||||
def step_plms(self, residual, image, t, num_inference_steps):
|
||||
timesteps = self.get_time_steps(num_inference_steps)
|
||||
|
||||
t_prev = timesteps[t]
|
||||
|
||||
@@ -19,9 +19,10 @@ import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import DDIM, DDPM, PNDM, GLIDE, DDIMScheduler, DDPMScheduler, LatentDiffusion, PNDMScheduler, UNetModel
|
||||
from diffusers import DDIM, DDPM, PNDM, GLIDE, BDDM, DDIMScheduler, DDPMScheduler, LatentDiffusion, PNDMScheduler, UNetModel
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.pipelines.pipeline_bddm import DiffWave
|
||||
from diffusers.testing_utils import floats_tensor, slow, torch_device
|
||||
|
||||
|
||||
@@ -213,6 +214,21 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||
expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
def test_module_from_pipeline(self):
|
||||
model = DiffWave(num_res_layers=4)
|
||||
noise_scheduler = DDPMScheduler(timesteps=12)
|
||||
|
||||
bddm = BDDM(model, noise_scheduler)
|
||||
|
||||
# check if the library name for the diffwave moduel is set to pipeline module
|
||||
self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")
|
||||
|
||||
# check if we can save and load the pipeline
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
bddm.save_pretrained(tmpdirname)
|
||||
_ = BDDM.from_pretrained(tmpdirname)
|
||||
# check if the same works using the DifusionPipeline class
|
||||
_ = DiffusionPipeline.from_pretrained(tmpdirname)
|
||||
@slow
|
||||
def test_glide_text2img(self):
|
||||
model_id = "fusing/glide-base"
|
||||
|
||||
Reference in New Issue
Block a user