1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Update README.md (#5267)

Co-authored-by: YiYi Xu <yixu310@gmail.com>
This commit is contained in:
Shubham S Jagtap
2023-10-07 03:20:18 +05:30
committed by GitHub
parent dd25ef5679
commit 306dc6e751

View File

@@ -128,7 +128,7 @@ When adding a new pipeline:
- Possible an end-to-end example of how to use it
- Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows:
```
```py
## XXXPipeline
[[autodoc]] XXXPipeline
@@ -138,7 +138,7 @@ When adding a new pipeline:
This will include every public method of the pipeline that is documented, as well as the `__call__` method that is not documented by default. If you just want to add additional methods that are not documented, you can put the list of all methods to add in a list that contains `all`.
```
```py
[[autodoc]] XXXPipeline
- all
- __call__
@@ -172,7 +172,7 @@ Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`)
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
description:
```
```py
Args:
n_layers (`int`): The number of layers of the model.
```
@@ -182,7 +182,7 @@ after the argument.
Here's an example showcasing everything so far:
```
```py
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
@@ -196,13 +196,13 @@ Here's an example showcasing everything so far:
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
following signature:
```
```py
def my_function(x: str = None, a: float = 1):
```
then its documentation should look like this:
```
```py
Args:
x (`str`, *optional*):
This argument controls ...
@@ -235,14 +235,14 @@ building the return.
Here's an example of a single value return:
```
```py
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:
```
```py
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --