mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
begin pipeline grad tts
This commit is contained in:
385
src/diffusers/pipelines/pipeline_grad_tts.py
Normal file
385
src/diffusers/pipelines/pipeline_grad_tts.py
Normal file
@@ -0,0 +1,385 @@
|
||||
""" from https://github.com/jaywalnut310/glow-tts """
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.modeling_utils import ModelMixin
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
||||
while True:
|
||||
if length % (2**num_downsamplings_in_unet) == 0:
|
||||
return length
|
||||
length += 1
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
device = duration.device
|
||||
|
||||
b, t_x, t_y = mask.shape
|
||||
cum_duration = torch.cumsum(duration, 1)
|
||||
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0],
|
||||
[1, 0], [0, 0]]))[:, :-1]
|
||||
path = path * mask
|
||||
return path
|
||||
|
||||
|
||||
def duration_loss(logw, logw_, lengths):
|
||||
loss = torch.sum((logw - logw_)**2) / torch.sum(lengths)
|
||||
return loss
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-4):
|
||||
super(LayerNorm, self).__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = torch.nn.Parameter(torch.ones(channels))
|
||||
self.beta = torch.nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
n_dims = len(x.shape)
|
||||
mean = torch.mean(x, 1, keepdim=True)
|
||||
variance = torch.mean((x - mean)**2, 1, keepdim=True)
|
||||
|
||||
x = (x - mean) * torch.rsqrt(variance + self.eps)
|
||||
|
||||
shape = [1, -1] + [1] * (n_dims - 2)
|
||||
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
||||
return x
|
||||
|
||||
|
||||
class ConvReluNorm(nn.Module):
|
||||
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size,
|
||||
n_layers, p_dropout):
|
||||
super(ConvReluNorm, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.conv_layers = torch.nn.ModuleList()
|
||||
self.norm_layers = torch.nn.ModuleList()
|
||||
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels,
|
||||
kernel_size, padding=kernel_size//2))
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
|
||||
for _ in range(n_layers - 1):
|
||||
self.conv_layers.append(torch.nn.Conv1d(hidden_channels, hidden_channels,
|
||||
kernel_size, padding=kernel_size//2))
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x_org = x
|
||||
for i in range(self.n_layers):
|
||||
x = self.conv_layers[i](x * x_mask)
|
||||
x = self.norm_layers[i](x)
|
||||
x = self.relu_drop(x)
|
||||
x = x_org + self.proj(x)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
||||
super(DurationPredictor, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels,
|
||||
kernel_size, padding=kernel_size//2)
|
||||
self.norm_1 = LayerNorm(filter_channels)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels,
|
||||
kernel_size, padding=kernel_size//2)
|
||||
self.norm_2 = LayerNorm(filter_channels)
|
||||
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_1(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.norm_2(x)
|
||||
x = self.drop(x)
|
||||
x = self.proj(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, channels, out_channels, n_heads, window_size=None,
|
||||
heads_share=True, p_dropout=0.0, proximal_bias=False,
|
||||
proximal_init=False):
|
||||
super(MultiHeadAttention, self).__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.proximal_bias = proximal_bias
|
||||
self.p_dropout = p_dropout
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = torch.nn.Parameter(torch.randn(n_heads_rel,
|
||||
window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
self.emb_rel_v = torch.nn.Parameter(torch.randn(n_heads_rel,
|
||||
window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
|
||||
torch.nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
torch.nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
if proximal_init:
|
||||
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
||||
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
||||
torch.nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
||||
if self.window_size is not None:
|
||||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
|
||||
rel_logits = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores_local = rel_logits / math.sqrt(self.k_channels)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device,
|
||||
dtype=scores.dtype)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
p_attn = torch.nn.functional.softmax(scores, dim=-1)
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(relative_weights,
|
||||
value_relative_embeddings)
|
||||
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = torch.nn.functional.pad(
|
||||
relative_embeddings, convert_pad_shape([[0, 0],
|
||||
[pad_length, pad_length], [0, 0]]))
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[:,
|
||||
slice_start_position:slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
batch, heads, length, _ = x.size()
|
||||
x = torch.nn.functional.pad(x, convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
||||
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
batch, heads, length, _ = x.size()
|
||||
x = torch.nn.functional.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
||||
x_flat = x.view([batch, heads, length**2 + length*(length - 1)])
|
||||
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, filter_channels, kernel_size,
|
||||
p_dropout=0.0):
|
||||
super(FFN, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size,
|
||||
padding=kernel_size//2)
|
||||
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size,
|
||||
padding=kernel_size//2)
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers,
|
||||
kernel_size=1, p_dropout=0.0, window_size=None, **kwargs):
|
||||
super(Encoder, self).__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
|
||||
self.drop = torch.nn.Dropout(p_dropout)
|
||||
self.attn_layers = torch.nn.ModuleList()
|
||||
self.norm_layers_1 = torch.nn.ModuleList()
|
||||
self.ffn_layers = torch.nn.ModuleList()
|
||||
self.norm_layers_2 = torch.nn.ModuleList()
|
||||
for _ in range(self.n_layers):
|
||||
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels,
|
||||
n_heads, window_size=window_size, p_dropout=p_dropout))
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels,
|
||||
filter_channels, kernel_size, p_dropout=p_dropout))
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
for i in range(self.n_layers):
|
||||
x = x * x_mask
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class TextEncoder(ModelMixin, ConfigMixin):
|
||||
def __init__(self, n_vocab, n_feats, n_channels, filter_channels,
|
||||
filter_channels_dp, n_heads, n_layers, kernel_size,
|
||||
p_dropout, window_size=None, spk_emb_dim=64, n_spks=1):
|
||||
super(TextEncoder, self).__init__()
|
||||
|
||||
self.register(
|
||||
n_vocab=n_vocab,
|
||||
n_feats=n_feats,
|
||||
n_channels=n_channels,
|
||||
filter_channels=filter_channels,
|
||||
filter_channels_dp=filter_channels_dp,
|
||||
n_heads=n_heads,
|
||||
n_layers=n_layers,
|
||||
kernel_size=kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
window_size=window_size,
|
||||
spk_emb_dim=spk_emb_dim,
|
||||
n_spks=n_spks
|
||||
)
|
||||
|
||||
|
||||
self.n_vocab = n_vocab
|
||||
self.n_feats = n_feats
|
||||
self.n_channels = n_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.filter_channels_dp = filter_channels_dp
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.spk_emb_dim = spk_emb_dim
|
||||
self.n_spks = n_spks
|
||||
|
||||
self.emb = torch.nn.Embedding(n_vocab, n_channels)
|
||||
torch.nn.init.normal_(self.emb.weight, 0.0, n_channels**-0.5)
|
||||
|
||||
self.prenet = ConvReluNorm(n_channels, n_channels, n_channels,
|
||||
kernel_size=5, n_layers=3, p_dropout=0.5)
|
||||
|
||||
self.encoder = Encoder(n_channels + (spk_emb_dim if n_spks > 1 else 0), filter_channels, n_heads, n_layers,
|
||||
kernel_size, p_dropout, window_size=window_size)
|
||||
|
||||
self.proj_m = torch.nn.Conv1d(n_channels + (spk_emb_dim if n_spks > 1 else 0), n_feats, 1)
|
||||
self.proj_w = DurationPredictor(n_channels + (spk_emb_dim if n_spks > 1 else 0), filter_channels_dp,
|
||||
kernel_size, p_dropout)
|
||||
|
||||
def forward(self, x, x_lengths, spk=None):
|
||||
x = self.emb(x) * math.sqrt(self.n_channels)
|
||||
x = torch.transpose(x, 1, -1)
|
||||
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
|
||||
x = self.prenet(x, x_mask)
|
||||
if self.n_spks > 1:
|
||||
x = torch.cat([x, spk.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
|
||||
x = self.encoder(x, x_mask)
|
||||
mu = self.proj_m(x) * x_mask
|
||||
|
||||
x_dp = torch.detach(x)
|
||||
logw = self.proj_w(x_dp, x_mask)
|
||||
|
||||
return mu, logw, x_mask
|
||||
Reference in New Issue
Block a user